首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
欧阳方平  王焕友  李明君  肖金  徐慧 《物理学报》2008,57(11):7132-7138
基于第一性原理电子结构和输运性质计算,研究了单空位缺陷对单层石墨纳米带(包括zigzag型和armchair型带)电子性质的影响.研究发现,单空位缺陷使石墨纳米带在费米面上出现一平直的缺陷态能带;单空位缺陷的引入使zigzag型半导体性的石墨纳米带变为金属性,这在能带工程中有重要的应用价值;奇数宽度的armchair型石墨纳米带表现出金属特性,有着很好的导电性能,同时,偶数宽度的armchair型石墨带虽有金属性的能带结构,但却有类似半导体的伏安特性;单空位缺陷使得奇数宽度的armchair石墨纳米带导电 关键词: 石墨纳米带 单空位缺陷 电子结构 输运性质  相似文献   

2.
We investigate the electronic structure of Fe/ZnSe/Fe magnetic tunnel junctions for which interdiffusion and reconstruction at the interfaces are considered. Taking into account the ab initio potential profile throughout the different layers of the structure, we discuss about its implications on the tunnel conductance. Our results show that interface reconstruction drives changes in the electronic structure which, in turn, produce an increase of the kinetic energy of the conduction electrons, independently of their spin orientation. We suggest that this reconstruction underlies the low tunnel magnetoresistance (TMR), as it is observed in transport measurements when compared with the theoretical value estimated for sharp interfaces.  相似文献   

3.
The electronic structure of Ag chalcogenides in the α phase, which exhibit an interesting, electronic semiconducting behaviour as well as the fast ion transport, is discussed on the basis of an energy band structure calculation. As a simplest way of simulating the effect of the Ag ions on the electronic states, some hypothetical crystalline compounds are constructed such as the perovskite, the sodium chloride and the flourite structures. The absolute magnitude of the calculated conduction electron effective mass is quite small irrespectively of the structures, about 10% of the free-electron mass, in semiquantitative agreement with experiments. A deviation from an effective mass approximation near the conduction band bottom is found to be appreciable, and to explain reasonably well experimental results. An origin of these features of the conduction band is a rather strong hybridization of the Ag 5s band and the chalcogen s band. The calculation also shows that the hybridization of the Ag 4d band and the chalcogen p band can affect the absolute magnitude of the hole effective mass appreciably, and that the energy band gap depends sensitively on these s-s and d-p hybridization effects.  相似文献   

4.
We characterized the conduction mechanisms in thin sputtered films of three representative binary Me–O (Me=Ta, W, and Nb) systems as a function of oxygen content, by combining in situ chemical state and electronic band structure studies from X-ray photoemission with temperature-dependent transport measurements. Despite certain differences, these amorphous films all displayed Fermi glass behavior following an oxidation-induced transition from metallic to hopping conduction, down to a sub-percolation threshold. The electron localization estimated from the band structure was in good agreement with that from the transport measurements, and the two were used to construct phase diagrams of conduction in the degree of oxidation-conductivity coordinates, which should prove important in the design of resistive switching and other electronic devices.  相似文献   

5.
秦威  张振华  刘新海 《物理学报》2011,60(12):127303-127303
利用计入卷曲效应的单壁碳纳米管(SWCNT)的能量色散关系,计算最低导带的电子速度及有效质量,并与不计入卷曲效应的结果进行了比较.计算结果表明:卷曲效应对电子速度及有效质量的影响与SWCNT的类型密切相关,金属锯齿型SWCNT对卷曲效应最为敏感,其次是扶手椅型SWCNT,最不敏感的是半导体锯齿型SWCNT.由此可以推断,卷曲效应对金属锯齿型SWCNT电子结构及低偏压输运特性影响最大,其次是扶手椅型SWCNT,影响最不明显的是半导体锯齿型SWCNT.这些结果与实验测量及密度泛函理论计算结果完全一致. 关键词: 单壁碳纳米管 卷曲效应 电子速度 电子有效质量  相似文献   

6.
The electronic structure of bases in DNA duplexes was investigated by resonant photoemission spectroscopy near the Fermi level, in order to specify charge migration mechanisms. We observed a kinetic energy shift of N-KLL Auger electrons and an intensity enhancement of valence electrons on the resonant photoemission spectra for both poly(dG).poly(dC) and poly(dA).poly(dT) DNAs. These directly show the localized unoccupied states of the bases. We conclude that the charge hopping model is pertinent for electric conduction in a DNA duplex, when electrons pass through the unoccupied states.  相似文献   

7.
8.
本文基于密度泛函理论(DFT)框架下的第一性原理计算方法,研究了不同Yb浓度掺杂ZnO体系的电子结构和光学性质.计算得到的结果证明,Yb掺杂ZnO后会造成电子结构和光学性质的明显改变.增加掺杂浓度使能带带隙逐渐变窄,其费米能级向上移动到导带,表现出n型半导体的特性;在Yb-4f态导带附近的带隙中产生了新的缺陷,同时观察到更好的吸收系数和折射率.因此,Yb掺杂ZnO对其电子性质和光学结构有很大的影响,为进一步深入了解掺杂ZnO性质的影响提供理论基础.  相似文献   

9.
We present investigations of the magnetic and electric transport properties, specific heat, and electronic structure of the intermetallic and strongly correlated system of CeRhSn(1-x)In(x) compounds. The main goal of this paper is to determine the hybridization energy between the f electron and conduction electron states, V(cf), and its influence on the ground state properties of the system. The complementary experimental data are discussed on the basis of the Anderson model for a periodic Kondo lattice. CeRhSn is known as a non-Fermi liquid, while CeRhIn is a valence fluctuating system. We discuss the ground state properties of CeRhSn(1-x)In(x) and compare the results with those obtained for the doped Ce-based Kondo insulators.  相似文献   

10.
We present a theoretical study of the transport parameters in a prototype conjugated-polymer, poly-para-phenylenevinylene, in two different possible crystalline packings. Our analysis is performed through density-functional electronic structure calculations, and allows one to obtain the fundamental parameters describing charge transport. The transfer integrals are found to be a crucial quantity to appreciate the effects of crystalline aggregation on conduction properties: our results indicate that interchain interactions can be viewed as a tunable parameter for the design of efficient electronic devices based on organic materials.  相似文献   

11.
The transformation of electronic states in Ca(001) films in strong electrostatic fields is studied using electron density functional theory. It is shown that an excess film charge of either sign pins the Fermi level (with respect to the conduction band edge) in a wide range of fields. For positively charged films, the change in the density of states at the Fermi level is small but the energy derivative of the density of states changes sign with increasing excess charge of the film. For negatively charged Ca(001) films, the change in the density of states at the Fermi level plays the main role in stabilizing the width of the occupied part of the conduction band; this should be manifested in the electronic thermodynamic and transport properties of negatively charged Ca(001) films with quantum confinement.  相似文献   

12.
双空位缺陷石墨纳米带的电子结构和输运性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
欧阳方平  徐慧  林峰 《物理学报》2009,58(6):4132-4136
基于第一原理电子结构和输运性质计算,研究了585双空位拓扑缺陷对锯齿(zigzag)型石墨纳米带(具有椅型(armchair)边)电子结构和输运性质的影响.研究发现,585双空位缺陷的存在使得锯齿型石墨纳米带的能隙增大,并在能隙中出现了一条局域于缺陷处的缺陷态能带,双空位缺陷的取向也影响其能带结构.另外,585双空位缺陷对能隙较小的锯齿型石墨纳米带输运性质的影响较大,而对能隙较大的锯齿型石墨纳米带影响很小,缺陷取向并不显著影响纳米带的输运性质. 关键词: 石墨纳米带 585空位缺陷 电子结构 输运性质  相似文献   

13.
The fascinating many-body physics involved in the interaction of a single magnetic impurity with the conduction electrons of its nonmagnetic metallic host is reflected in unconventional phenomena in magnetism, transport properties and the specific heat. Characteristic low-energy excitations, termed the Kondo resonance, are generally believed to be responsible for this striking behaviour. However, in spite of an intense research for over more than 30 years, a direct spectroscopic observation of the Kondo resonance on individual magnetic adatoms withstood experimental efforts hitherto. The development of low-temperature scanning tunneling microscopes (STM) operating under ultrahigh vacuum (UHV) conditions has provided new opportunities for investigating locally the electronic structure at surfaces. At low temperatures, due to the reduced broadening of the Fermi level of the STM tip and the sample, rather high energy resolution (≤ 1 meV) in scanning tunneling spectroscopy (STS) is achievable. Moreover, the absence of diffusion together with the spatial resolution of the STM enables detailed studies of electronic states on and near single adsorbed atoms and other nanoscale structures. Recently, for the first time, two such STS/STM experiments spatially resolved the electronic properties of individual magnetic adatoms displaying the Kondo effect. In particular, the observed Fano lineshape of the Kondo resonance reveals unambiguously the details of the quantum mechanical interference between the localized orbital and the conduction electrons on an atomic length scale [1,2]. This achievement of the detection of individual magnetic atoms with atomic resolution opens new perspectives for probing magnetic nanostructures.  相似文献   

14.
We report on the intriguing electrical transport properties of compressed CaF_2 nanocrystals. The diffusion coefficient,grain and grain boundary resistances vary abnormally at about 14.37 GPa and 20.91 GPa, corresponding to the beginning and completion of the Fm3m-Pnma structural transition. Electron conduction and ion conduction coexist in the transport process and the electron conduction is dominant. The electron transference number of the Fm3m and Pnma phases increases with pressure increasing. As the pressure rises, the F~- ion diffusion and electronic transport processes in the Fm3m and Pnma phases become more difficult. Defects at grains play a dominant role in the electronic transport process.  相似文献   

15.
The scalar Boltzmann transport equation (BTE) is often applicable to radiative energy transfer, electron-beam propagation, as well as thermal conduction by electrons and phonons provided that the characteristic length of the system is much larger than the wavelength of energy carriers and that certain interference phenomena and the polarization nature of carriers are ignored. It is generally difficult to solve the BTE analytically unless a series of assumptions are introduced for the particle distribution function and scattering terms. Yet, the BTE can be solved using statistical approaches such as Monte Carlo (MC) methods without simplifying the underlying physics significantly. Derivations of the MC methods are relatively straightforward and their implementation can be achieved with little effort; they are also quite powerful in accounting for complicated physical situations and geometries. MC simulations in radiative transfer, electron-beam propagation, and thermal conduction by electrons and phonons have similar simulation procedures; however, there are important differences in implementing the algorithms and scattering properties between these simulations. The objective of this review article is to present these simulation procedures in detail and to show that it is possible to adapt an existing MC computer code, for instance, in radiative transfer, to account for physics in electron-beam transport or phonon (or electronic thermal) conduction by sorting out the differences and implementing the correct corresponding steps. Several simulation results are presented and some of the difficulties associated with different applications are explained.  相似文献   

16.
Stanene is a two-dimensional (2D) buckled honeycomb structure which has been studied recently owing to its promising electronic properties for potential electronic and spintronic applications in nanodevices. In this article we present a first-principles study of electronic properties of fluorinated bilayer stanene. The effect of tensile strain, intrinsic spin-orbit and van der Waals interactions are considered within the framework of density functional theory. The electronic band structure shows a very small overlap between valence and conduction bands at the Γ point which is a characteristic of semimetal in fluorinated bilayer stanene. A relatively high value of tensile strain is needed to open an energy band gap in the electronic band structure and the parity analysis reveals that the strained nanostructure is a trivial insulator. According to our results, despite the monolayer fluorinated stanene, the bilayer one is not an appropriate candidate for topological insulator.  相似文献   

17.
Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.  相似文献   

18.
In this contribution we review in detail our recently developed hybrid model able to trace simultaneously nonequilibrium electron kinetics, evolution of an electronic structure, and eventually nonthermal phase transition in solids irradiated with femtosecond free‐electron laser pulses. Diamond irradiated with an ultrashort intense x‐ray pulse serves as an example to show how an irradiated material undergoes an ultrafast phase transition on sub‐picosecond timescales. The transition of diamond into graphite is induced by an excitation of electrons from the valence band into the conduction band, which, in turn, induces a rapid change of the interatomic potential. Our theoretical model incorporates: a Monte‐Carlo method for tracing high‐energy electrons and K‐shell holes in diamond; a temperature equation for the valence‐band and low‐energy conduction‐band electrons; a tight binding method for calculation of the evolving electronic structure of the material and potential energy surfaces; and molecular dynamics propagating atomic trajectories. This unified approach predicts the damage threshold of diamond in a good agreement with experimentally measured values. It reveals a multi‐step nature of nonthermal phase transition being an interplay between electronic excitation, changes of the band structure, and atomic reordering. An effect of pulse parameters, such as photon energy and temporal pulse shape, on the phase transition is discussed in detail. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Si中掺Er的原子构型与电子特性   总被引:5,自引:0,他引:5       下载免费PDF全文
万钧  叶令  王迅 《物理学报》1998,47(4):652-657
采用定域密度泛函-离散变分方法(LDF-DVM)计算了Si中掺Er的原子构型与电子特性,并计算了O共掺杂对Si中掺Er体系的原子构型与电子特性的影响.结果表明,在没有O共掺杂时,Er处于四面体间隙位置时能量最低,此时Er的5d轨道在Si的导带中引入浅的共振态.处于替代位置的Er形成能略高,Er的5d轨道在Si的导带顶附近引入了受主态.当有O存在时,体系的形成能降低,能量最低的构型是Er处于六角形间隙位置,周围有6个O,此时Er的5d轨道在Si的导带下约为0.3eV处引入杂质态.从而解释了Si中掺Er体系在 关键词:  相似文献   

20.
《Physics letters. A》2014,378(30-31):2157-2162
The solid state physical approach is widely used for the characterization of electronic properties of DNA. In the simplest case the helical symmetry is explicitly utilized with a repeat unit containing only a single nucleotide or nucleotide pair. This model provides a band structure that is easily interpretable and reflects the main characteristic features of the single nucleotide or a nucleotide pair chain, respectively. The chemical variability of the different DNA chains is, however, almost completely neglected in this way. In the present work we have investigated the effect of the different sequences on the band structure of periodic DNA models. For this purpose we have applied the Hartree–Fock crystal orbital method for single and double stranded DNA chains with two different subsequent nucleotides in the repeat unit of former and two different nucleotide pairs in the latter case, respectively. These results are compared to simple helical models with uniform sequences. The valence and conduction bands related to the stacked nucleotide bases of single stranded DNA built up only from guanidine as well as of double stranded DNA built up only from guanidine–cytidine pairs showed special properties different from the other cases. Namely, they had higher conduction and lower valence band positions and this way larger band gaps and smaller widths of these bands. With the introduction of non-uniform guanidine containing sequences band structures became more similar to each other and to the band structures of other sequences without guanidine. The maximal bandwidths of the non-uniform sequences are considerably smaller than in the case of uniform sequences implying smaller charge carrier mobilities both in the conduction and valence bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号