首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effective exchange integrals (J ab(M)) between two cation radicals of title compounds in the Heisenberg model were calculated by ab initio molecular orbital (MO) and density functional theory (DFT) methods, together with hybrid DFT methods. The J ab(D) values between two dimer mono-cation radicals were also estimated assuming J ab(D) = J ab(M)/2. It is found that the spin lattice obtained by the ab initio method is square planar and linear in BEDT-TTF and BETS planes, respectively, although other previous calculations show that spin lattice in the BEDT-TTF plane is a triangular one. The J ab and overlap integrals (sab ) values by the ab initio methods were used to determine transfer integral (tab ) and Coulomb repulsion (Ucff ) parameters of the Hubbard model, which were compared with those of the previous results. Implications of the calculated results are discussed in relation to the spin-mediated mechanism for superconductivity.  相似文献   

2.
基于第一性原理,利用密度泛函理论中的广义梯度近似 (GGA)对GenFe(n=1—8)团簇进行了结构优化、能量及频率的计算,得到了 GenFe(n=1—8)团簇在不同自旋多重度下的平衡构型及其基态结构.结果表明:GenFe混合团簇的平均结合能明显比相应纯锗团簇的平均结合能有所增大,即掺杂Fe原子可以提高锗团簇的稳定性;纯锗团簇的基态除了Ge2为自旋三重态外其他均为单重态,而混合团簇GenFe(n=1—8)的基态均为自旋三重态;对GenFe(n=1—8)团簇的磁性做了较系统的研究,发现团簇总磁矩随团簇尺寸增大基本稳定在2μB (只有Ge8Fe的总磁矩2.391μB较明显地偏离了2μB),另外团簇中Fe原子的磁矩在2.5μB左右振荡. 关键词nFe团簇')" href="#">GenFe团簇 密度泛函理论(DFT) 自旋多重度 磁矩  相似文献   

3.
The magnetic properties of Ag2V OP2O7 were examined by evaluating its spin exchange interactions in terms of spin dimer analysis based on tight binding calculations and mapping analysis based on first principles density functional theory calculations. Both calculations show that a strong spin exchange interaction occurs through the super-superexchange path J1 with the V…V distance of 5.293 Å. This strong antiferromagnetic interaction forms isolated spin dimer units, which are coupled antiferromagnetically by the spin exchange path J3 to form a two-leg spin ladder that has no spin frustration. The inter–dimer interaction J2 is found to be ferromagnetic, and does not lead to spin frustration.  相似文献   

4.
5.
We examine the critical behavior of a magnetic superlattice which made up of two magnetic materials, A and B. Using the effective field theory with a probability distribution technique that accounts for the single-site spin correlation, we derive the analytical equation for the Curie temperature of the superlattice which alternates as ABAB...AB. The dependence of the Curie temperature on the interface coupling strength Jab and the layer number of the finite superlattice was calculated. The effects of the surface modification are also studied. Received 2 March 2001  相似文献   

6.
郭平  郑继明  赵佩  郑琳琳  任兆玉 《中国物理 B》2010,19(8):83601-083601
<正>The Ir_n(n=1-13) clusters are studied using the relativistic density functional method with generalized gradient approximation.A series of low-lying structures with different spin multiplicities have been considered.It is found that all the lowest-energy Ir_n(n=4-13) geometries prefer non-compact structures rather than compact structure growth pattern.And the cube structure is a very stable cell for the lowest-energy Ir_n(n8) clusters.The second-order difference of energy,the vertical ionization potentials,the electron affinities and the atomic average magnetic moments for the lowest-energy Ir_n geometries all show odd-even alternative behaviours.  相似文献   

7.
In this study, the structural, optical, electronic, and magnetic properties of AgmCun (m?+?n?=?3 to 6) bimetallic clusters were systematically investigated by density functional theory in the theoretical framework of the generalized gradient approximation exchange-correlation functional. The results show that the ground state structures of these clusters are planar structures, with triangular geometries for three-atom Ag-Cu clusters, rhombic geometries for four-atom Ag-Cu clusters, trapezoids for five-atom Ag-Cu clusters, and triangular geometries for six-atom Ag-Cu clusters. The Ag2Cu2, Ag2Cu3, and Ag3Cu3 clusters are the geometric magic clusters for four-, five-, and six-atom Ag-Cu clusters, respectively. As the number of Cu atoms increases, the vertical ionization potential values of the four- to six-atom Ag-Cu clusters increase, while the vertical electron affinity values of the three- to five-atom Ag-Cu clusters decrease. Compared to pure Ag clusters, the main absorption peaks of the Ag-Cu clusters of the same number of atoms appear to blueshift. The even-numbered clusters exhibit no magnetic moments, while the odd-numbered clusters exhibit large magnetic moments of 1.00 μB. The magnetic moments of these Ag-Cu clusters are believed to be related to the atom sites.  相似文献   

8.
采用密度泛函理论中的广义梯度近似(GGA)对CoBen(n=1—12)团簇的几何构型进行优化,并对能量、频率和磁性进行了计算,同时考虑了电子的自旋多重度.得到了CoBen(n=1—12)团簇最低能量结构的自旋多重度是2和4.在CoBen(n=1—12)团簇中,Co原子的磁矩出现了奇偶振荡,当n=6时,Co原子的4s,3d和Be原子的2s,2p较强杂化、Co-Be键长的减小以及对称性的降低导致Co原子的磁矩最小.通过对CoBen(n=1—12)团簇电子性质的分析,得出了掺杂可以增强团簇稳定性和有利于增加合金化学活性的结论.n=5,10是团簇的幻数. 关键词n团簇')" href="#">CoBen团簇 自旋多重度 磁矩 电子性质  相似文献   

9.
The structural, energetic, electronic and magnetic properties of small bimetallic ConPtm (n+m≤5) nanoalloy clusters are investigated by density functional theory within the generalized gradient approximation. A plausible candidate for the ground state isomer and the other possible local minima, binding energies, relative stabilities, magnetic moments, the highest occupied and the lowest unoccupied molecular orbital energy gaps have been calculated. It is found as a general trend that average binding energies of Co-Pt bimetallic clusters increase with Pt doping. Planar structures of pure Co clusters become 3D with the addition of Pt atoms. CoPt2, Co2Pt2, Co3Pt2, and CoPt4 nanoalloys are identified as the most stable species since they have higher second finite difference in energy than the others. Pt doping decreases the total spin magnetic moment gradually. A rule for the prediction of the total spin moments of small Co-Pt bimetallic clusters is derived.  相似文献   

10.
基于第一性原理,用密度泛函理论中的广义梯度近似方法,获得了BnNi(n≤5)小团簇在不同自旋多重度下的几何构型,确定了最低能量结构,并计算了相应的频率、平均结合能和磁性. 结果表明:BnNi(n≤5)小团簇最低能量结构的自旋多重度分别为2,1,2,1,2;Ni掺入B团簇后增大了其结合能;Ni原子磁矩和团簇总磁矩随团簇尺寸增大而呈现振荡趋势. 关键词nNi小团簇')" href="#">BnNi小团簇 自旋多重度 磁性  相似文献   

11.
We solve several low temperature problems of an infinite range metallic spin glass model. A compensation problem of T 0 divergencies is solved for the free energy which helped to extract the quantum critical behaviour of the spin glass order parameters as a function of δJ = JJc (T = 0). The critical value Jc(T = 0) = 3/16pF?1 of the frustrated spin coupling J, which separates spin glass from nonmagnetic (spin liquid) phase, is determined exactly in the static saddle point solution for a semielliptic metallic band model in terms of the density of states at the Fermi level. In addition to the replica-overlap order parameter 〈Qab〉, ab, the diagonal 〈Qaa〉 is confirmed as order parameter by the result 〈QaaSP ~ (δJ)β, β = 1, and its susceptibility χaaaa ~(-δJ) with γ = 1/2 at T = 0. The value for γ agrees with the one for the transverse field Ising spin glass. The low γ decay of 〈Qaa〉, ~ T is obtained exactly in the whole quantum disordered phase including the critical value.  相似文献   

12.
We report the results of calculations which were performed to investigate equilibrium structures, electronic and magnetic properties of stoichiometric (NiSn) n clusters with n = 1–6 within the framework of density functional theory. The calculated results show that the structural arrangement of (NiSn) n clusters is dominated by the Ni-Sn and Ni-Ni interactions. We find that these binary clusters show significant variation in the geometries as compared to that of the host nickel clusters. The preference for tetrahedron unit of Ni3Sn is seen in the lowest-energy configuration of these clusters. The multi-centre bonding between Ni atoms play an important role in stabilizing the stoichiometric Ni-Sn clusters. Doping of Sn atoms enhances the binding energy and reduces the ionization potential of nickel clusters. These binary clusters prefer the lowest spin state. For (NiSn)6 the magnetic moment is 0 μB. The complete quenching of the cluster magnetic moment appears to be due to the antiferromagnetic alignment of atomic spins as revealed by the spin density plots.  相似文献   

13.
A one-dimensional (1D) silver (I) complex of nitronyl nitroxide with fairly strong antiferromagnetic interaction, in which the metal ions are diamagnetic, is investigated by means of the ab initio crystal orbital method based on the density functional theory. The calculated values of the magnetic coupling constant (J) are close to the experimental measured J value in the periodic system. The magneto-structural correlation reveals that the existence of an antiferromagnetic coupling pathway along nitronyl nitroxide units via silver (I) ion in this system. The spin population distribution also shows the existence of spin delocalization along the ONCNO–Ag–ONCNO, which affords a rational interpretation for the antiferromagnetic interaction mechanism.  相似文献   

14.
The magnetic properties of Ce(Ru0.85Rh0.15)2Si2 were studied by neutron scattering and measurements of magnetization, susceptibility, specific heat and thermal expansion as a function of temperature. We observe a crossover from a high temperature localized spin to a low temperature heavy electron state. Spin density wave (SDW) behavior appears in the heavy electron state below TN = 5.5 K and the volume change due to spin quantum fluctuations associated with the SDW and the Kondo screening is reminiscent of moment-volume instabilities of the INVAR and anti-INVAR behavior of 3 d transition metal alloys.  相似文献   

15.
陈冬冬  邝小渝  赵亚儒  邵鹏  李艳芳 《中国物理 B》2011,20(6):63601-063601
We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, . . . , 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated. All of them exhibit a pronounced odd-even alternation, manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4.  相似文献   

16.
Melt grown samples of Y1.2Ba1.8Cu2.4O x have been prepared and studied for their current carrying capacity. The composition was chosen to include Y2BaCuO5 (211) particles in the YBa2Cu3O x (123) phase. The critical current density (J c) of these samples was studied as a function of magnetic field using magnetization technique. The micrographic investigation shows well aligned grains in this material. The magnetic hysteresis measurements were done using a MPMS SQUID magnetometer up to the fields of 5.5 T. TheJ c was estimated from the remanent magnetization using Bean model. Isothermal magnetization hysteresis loops at low fields reveal the presence of only one kind of hysteresis loops (corresponding to intragrain magnetizations). This is a valid proof that the weak links are greatly eliminated in these samples prepared by MG process. TheJ c behaviour as a function of magnetic field has two components, a rapidly decaying exponential function of field and the other component that predominates at higher fields. This could be explained if we assume that the sample contains two phases of superconductors, one having a lowH c2 becoming normal at fairly medium fields of the order of a few kilogauss will act as pinning centres for the other phase having higherH c2 and hence higherJ c at high fields.  相似文献   

17.
The structural, electronic and magnetic properties of small gallium clusters doped with Cobalt have been studied using spin-polarised density functional theory. The binding energy per atom, second-order differences of total energies and fragmentation energies of equilibrium geometries of the host Gan+1 and doped GanCo (n = 1–12) clusters are computed. Doped clusters are found to be more stable than pure Ga clusters; Ga3Co, Ga5Co and Ga8Co clusters are exceptionally stable. Doping with Co changes the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO–LUMO) gap, and also affects the magnetic moments of clusters.  相似文献   

18.
We report the magnetic properties of small Ni13-nAln\hbox{Ni}_{13-n}\hbox{Al}_n clusters with n = 0–13 calculated in the framework of density functional theory. The cluster magnetic moment decreases with the sequential substitution of Ni by Al atoms, which can be attributed to a greater degree of hybridization that forces the pairing of the electrons in the molecular orbitals of Ni and Al. For Ni7Al6, the complete quenching of the cluster magnetic moment appears to be due to the antiferromagnetic alignment of atomic spins as revealed by the spin density plots.  相似文献   

19.
Jia-Jia Xu  Hui-Ji Li 《Molecular physics》2014,112(12):1710-1723
In this work, the ionic solvation and association behaviours in the LiCl aqueous solution were investigated using density functional theory (DFT), a polarised continuum model and classical molecular dynamics simulations. DFT calculations of LiCl(H2O)1–6,8 clusters show that contact ion pair (CIP) and solvent-shared ion pair (SSIP) conformers of LiCl(H2O)n (n ≥ 4) clusters are generally energetic both in the gas phase and in the aqueous solution. Some SSIP conformers may be slightly more stable than their CIP isomers when at least eight water molecules are incorporated in the inner hydration shells of LiCl hydrates. The transformation between CIP and SSIP conformers is easy by overcoming a small energy barrier, which mainly results from the hydration shell reorganisation of Li+. Molecular dynamics simulations show that ion pairs or ion clusters can be found in the LiCl aqueous solution, and the probability of CIP conformers or ion clusters presented in the LiCl solution generally increases with rise in temperature. However, the presentation of ion pairs or ion clusters in the LiCl aqueous solution does not inevitably lead to the nucleation of LiCl crystallisation.  相似文献   

20.
《Current Applied Physics》2018,18(6):762-766
We report a facile method to enhance the critical current density (Jc) of superconducting MgB2 thin films. MgB2 thin films were deposited on zinc acetate dehydrate (Zn(CH3COO)22H2O) spin-coated Al2O3 (000l) substrates by using a hybrid physical-chemical vapor deposition system at low temperatures. Synthesis of MgB2 at low temperatures can reduce the substitution of Zn into the Mg site, hence avoiding the reduction of superconducting critical temperature. MgB2 thin films grown on ZnO-buffered layers showed a significant enhancement of Jc in the magnetic field due to the creation of additional pinning sources, namely point defects and grain boundaries. Broad peaks were observed in the magnetic field dependence of the flux pinning force density, indicating competition of different pinning sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号