共查询到18条相似文献,搜索用时 0 毫秒
1.
Apparent diffusion behaviour of intermolecular double-quantum coherence modulated by a distant dipolar field in solution NMR 下载免费PDF全文
A modified correlated spectroscopy (COSY) revamped with
asymmetric Z-gradient echo detection sequence was designed to
investigate the influence of diffusion behaviour on intermolecular
double-quantum coherence signal attenuation during the
pre-acquisition period. Theoretical formulas were deduced and
experimental measurements and simulations were performed. It is
found that the diffusion behaviour of intermolecular double-quantum
coherence in the pre-acquisition period may be different from that of
conventional single-quantum coherence, depending on the relative
orientation of diffusion weighting gradients to coherence selection
gradients. When the orientation of the diffusion weighting gradients is
parallel or anti-parallel to the orientation of the coherence
selection gradients, the diffusion is modulated by the distant
dipolar field. This study is helpful for understanding the signal
properties in intermolecular double-quantum coherence magnetic
resonance imaging. 相似文献
2.
The diffusion behaviors of spins in the presence of distant dipolar field in two-component spin systems during the second evolution period of a modified CRAZED sequence before acquisition were investigated. Theoretical formulas were deduced based on the distant dipolar field model. The simulation results and experimental observations are consistent with the theoretical predictions. This study shows that the relative intensities of signals from intermolecular zero-quantum coherences (iZQCs) and intermolecular double-quantum coherences (iDQCs) have the same diffusion attenuation characteristic under the combined effect of diffusion weighting gradients and distant dipolar field during the second evolution period. This diffusion attenuation may be different from that of conventional single-quantum coherence signal, depending on the relative orientation of the diffusion weighting gradients to the coherence selection gradients. The results presented herein are helpful for understanding the effect of distant dipolar field from a spin system on the diffusion behavior of other spin system and the signal properties in the iZQC or iDQC magnetic resonance imaging. 相似文献
3.
在高极化多自旋液体样品中,同时存在着分子间偶极(D)耦合和分子内标量(J)耦合,它们的共同作用产生了一些原来观测不到的分子间多量子相干信号。而且,信号的裂分模式与只存在J耦合的多自旋体系中观测到的多量子相干信号的裂分模式不同。本文从理论和实验上研究了这些禁阻的共振峰及其独特的裂分模式。为了比较验证,我们以I2S3+X自旋体系为例,结合使用选择和非选择性的射频脉冲序列来获得分子间双量子相干信号的五种裂分模式。进而归纳出对IpSq+Xk (p, q, k = 1, 2, 3,…)自旋体系普适的裂分模式规则。并指出,它们中如(1:0:-1)的裂分模式会放大J耦合裂分,使得J耦合常数的测量更精确,特别在J耦合常数很小或不均匀场中的J耦合常数的测量中具有诱人的应用前景。结果表明理论预测,计算机模拟和实验观测结果三者吻合的很好。 相似文献
4.
Charles-Edwards GD Payne GS Leach MO Bifone A 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2004,166(2):157-227
Intermolecular multiple-quantum coherences (iMQCs) have been reported to offer a sensitivity to sample structure at a specific user-defined length scale down to the order of 10 microm. When assessing this novel contrast mechanism in controlled phantom experiments, we have observed three different mechanisms whereby residual single-quantum coherences (SQCs) arising from intense high spatial frequencies, stimulated echoes and strong spatially encoding gradients can produce significant changes in signal contrast at particular length scales. These changes which only appear when components arising from SQCs and iMQCs are both present in the detected signal, are similar to changes previously attributed to iMQCs alone. We demonstrate each mechanism by which these residual SQCs arise and describe methods for their suppression. 相似文献
5.
The dependence of the bulk signal intensity from a CRAZED NMR pulse sequence on magnetic field gradient strength and direction as a method to probe the geometry of porous materials is investigated. In this article, we report on the reconstruction of three-dimensional media consisting of a void phase and an NMR-observable liquid phase using the bulk intensity of the distant dipolar field. The correlation gradient strength and direction provide the spatial encoding of the material geometry. An integral equation for the total signal intensity is then solved numerically by a simulated annealing algorithm to recover the indicator function of the fluid phase. Results show that cylindrical and spherical structures smaller than the volume contributing to the NMR signal can be resolved using three values of the correlation distance and three orthogonal gradient directions. This is done by minimizing a cost function which measures the distance between the bulk signal dependence on gradient parameters for the simulated configuration and the signal dependence for the target configuration. The algorithm can reconstruct and differentiate their spherical and cylindrical phase-inverted equivalents. It can also differentiate horizontal from vertical cylinders, demonstrating the potential for assessing structural anisotropy and other coarse geometric quantifiers in a porous material. 相似文献
6.
Cai C Lin Y Cai S Chen Z Zhong J 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2008,193(1):94-101
Coherence selection gradients have been considered as indispensable for high-resolution NMR spectroscopy in inhomogeneous fields utilizing the CRAZED-type sequences. However, our experimental results demonstrate that these gradients can be omitted if an appropriate phase cycling is applied. The measured linewidth of reconstructing 1D high-resolution spectral peaks does not depend on the dipolar correlation distance determined by the coherence selection gradients, but is only affected by diffusion and T(2) relaxation. This finding suggests the need to reconsider the mechanism for the iMQC-based high-resolution spectroscopy. 相似文献
7.
Based on heteronuclear intermolecular single-quantum coherences between proton (1H) and quadrupolar nuclei (i.e. deuterium 2H), a three-dimensional nuclear magnetic resonance (NMR) pulse sequence is proposed for recovering high-resolution two-dimensional J-resolved NMR spectra from samples mixed with a deuterated solvent in the presence of large magnetic field inhomogeneities. Benefitting from excitation of spins via two different radio frequency (RF) transmit channels, this sequence is suitable for applications in randomly large inhomogeneous fields and the solvent suppression generally required in homonuclear intermolecular multiple-quantum coherence approaches is no longer necessary. Systematic theoretical analyses are given based on the distant dipolar field treatment. Experiment on a sample of corn oil in deuterated acetone and ethyl 3-bromopropionate and acetone dissolved in DMSO-d6 in a deshimmed field with severe inhomogeneous broadening is performed to show the feasibility and applicability of this sequence. 相似文献
8.
Lin Y Chen Z Cai S Zhong J 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2008,190(2):298-306
Two new NMR pulse sequences, based on intermolecular multiple-quantum coherences (iMQCs), were developed to obtain apparent J coupling constants with a scaling factor from one to infinity relative to the conventional J coupling constants. Here the apparent J coupling constants were defined as apparent peak separations in unit of Hz in a reconstructed spectrum for a coupled spin system. Except for the adjustable scaling factor for apparent J coupling constants, the sequences hold the advantage of high acquisition efficiency, and retain the spectral information such as chemical shifts, multiplet patterns, and relative peak areas under inhomogeneous fields. For spin systems with small scalar coupling constants, well-resolved J-spectra can be achieved by selecting a proper scaling factor. Theoretical predictions are in good agreement with simulation results and experimental observations. 相似文献
9.
Sachleben JR Beverwyk P Frydman L 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2000,144(2):330-342
Aseries of uni- and multidimensional variants of the dipolar exchange-assisted recoupling (DEAR) NMR experiment is described and applied to determinations of (13)C-(14)N dipolar local field spectra in amino acids and dipeptides. The DEAR protocol recouples nearby nuclei by relying on differences in their relative rates of longitudinal relaxation, and has the potential to give quantitative geometric results without requiring radiofrequency pulsing on both members of a coupled spin pair. One- and two-dimensional variants of this recoupling strategy on generic I-S pairs are discussed, and measurements of (13)C-(14)N distances and 2D local field experiments sensitive to the relative orientation of CN vectors with respect to the (13)C shielding tensor are presented. Since these measurements did not involve pulsing on the broad nitrogen resonance, their results were independent of the quadrupolar parameters of this nucleus. High-resolution 3D NMR versions of the 2D experiments were also implemented in order to separate their resulting local field patterns according to the isotropic shifts of inequivalent (13)C sites. These high-resolution 3D acquisitions involved collecting a series of 2D DEAR NMR data sets on rotating samples as a function of spinning angle, and then subjecting the resulting data to a processing akin to that involved in variable-angle correlation NMR. Once successfully tested on l-alanine this experiment was applied to the analysis of a series of dipeptides, allowing us to extract separate local field (13)C-(14)N spectra from this type of multisite systems. 相似文献
10.
Mor Mishkovsky Uzi Eliav Gil Navon Lucio Frydman 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2009,200(1):142-146
Intermolecular Multiple-Quantum Coherences (iMQCs) can yield interesting NMR information of high potential usefulness in spectroscopy and imaging – provided their associated sensitivity limitations can be overcome. A recent study demonstrated that ex situ dynamic nuclear polarization (DNP) could assist in overcoming sensitivity problems for iMQC-based experiments on 13C nuclei. In the present work we show that a similar approach is possible when targeting the protons of a hyperpolarized solvent. It was found that although the DNP procedure enhances single-quantum 1H signals by about 600, which is significantly less than in optimized low-γ liquid-state counterparts, the non-linear dependence of iMQC-derived signals on polarization can yield very large enhancements approaching 106. Cleary no practical amount of data averaging can match this kind of sensitivity gains. The fact that DNP endows iMQC-based 1H NMR spectra with a sensitivity that amply exceeds that of their thermally polarized single-quantum counterpart, is confirmed in a number of simple single-scan 2D imaging experiments. 相似文献
11.
Bowtell R Gutteridge S Ramanathan C 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2001,150(2):147-155
We describe imaging experiments in which the pattern of the dipolar field generated by spatially modulated nuclear magnetization is directly visualized in simply structured phantoms. Two types of experiment have been carried out at 11.7 T using (1)H NMR signals. In the first, the field from a single spin species is imaged via its own NMR signal. In the second, the NMR signal from one spin species is used to image the field generated by a second species. The field patterns measured in these experiments correspond well with those calculated using simple theoretical expressions for the dipolar field. The results also directly demonstrate the spatial sensitivity of the signal generated using dipolar field effects, indicating that the range of the field depends upon the inverse of the spatial frequency with which the magnetization is modulated. 相似文献
12.
Separation of isotropic chemical and second-order quadrupolar shifts by multiple-quantum double rotation NMR 总被引:1,自引:1,他引:0
Ivan Hung Alan Wong Andy P. Howes Tiit Anupld Ago Samoson Mark E. Smith Diane Holland Steven P. Brown Ray Dupree 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2009,197(2):229-236
Using a two-dimensional multiple-quantum (MQ) double rotation (DOR) experiment the contributions of the chemical shift and quadrupolar interaction to isotropic resonance shifts can be completely separated. Spectra were acquired using a three-pulse triple-quantum z-filtered pulse sequence and subsequently sheared along both the ν1 and ν2 dimensions. The application of this method is demonstrated for both crystalline (RbNO3) and amorphous samples (vitreous B2O3). The existence of the two rubidium isotopes (85Rb and 87Rb) allows comparison of results for two nuclei with different spins (I = 3/2 and 5/2), as well as different dipole and quadrupole moments in a single chemical compound. Being only limited by homogeneous line broadening and sample crystallinity, linewidths of approximately 0.1 and 0.2 ppm can be measured for 87Rb in the quadrupolar and chemical shift dimensions, enabling highly accurate determination of the isotropic chemical shift and the quadrupolar product, PQ. For vitreous B2O3, the use of MQDOR allows the chemical shift and electric field gradient distributions to be directly determined—information that is difficult to obtain otherwise due to the presence of second-order quadrupolar broadening. 相似文献
13.
14.
Anisotropic Orientation of Lactate in Skeletal Muscle Observed by Dipolar Coupling in H NMR Spectroscopy 总被引:1,自引:0,他引:1
I. Asllani E. Shankland T. Pratum M. Kushmerick 《Journal of magnetic resonance (San Diego, Calif. : 1997)》1999,139(2):213-224
Double quantum (DQ), J-resolved (1)H NMR spectra from rat and bovine skeletal muscle showed a splitting frequency ( approximately 24 Hz) for the lactate methyl protons that varied with the orientation of the muscle fibers relative to the magnetic field. In contrast, spectra of lactate in solution consist of a J-coupled methyl doublet and a J-coupled methine quartet (J(HH) = 7 Hz) with no sensitivity to sample orientation. Spectra acquired in magnetic fields of 4.7, 7, and 11 T showed that the splitting was not due to inhomogeneities in magnetic susceptibility within the muscle, because the magnitude of the splitting did not scale with the strength of B(0) fields. Triple quantum coherence (TQC) spectra revealed two distinct transition frequencies on the methyl resonance. These frequencies resulted from intra-methyl and methine-methyl couplings in this four spin system (A(3)X). Decoupling experiments on the triple quantum coherence showed that the observed frequency splitting was due mainly to the dipolar interactions between the methine and methyl protons of the lactate molecule. Thus, all the proton resonances of the lactate molecules in muscle behave anisotropically in the magnetic field. Adequate design and interpretation of spectroscopic experiments to measure lactate in muscle, and possibly in any cell and organ which contain asymmetric structures, require that both the dipolar coupling described here and the well-known scalar coupling be taken into account. 相似文献
15.
Anastasia Vyalikh Dominique Massiot Ulrich Scheler 《Solid state nuclear magnetic resonance》2009,36(1):19-23
27Al solid-state NMR has been applied to study the local structure of pristine and chemically modified aluminium layered double hydroxides (LDH). The pristine LDH only shows six-fold coordinated, octahedral, aluminium, while the calcined and subsequently surfactant treated LDH sample shows a significant fraction of four-fold coordinated tetrahedral aluminium. The co-existence of two types of octahedral sites with different quadrupolar parameters is clearly observed in both samples. Quadrupolar coupling constants and isotropic chemical shifts have been measured from the 27Al triple-quantum MAS NMR allowing to fit the 27Al MAS spectra and quantify the different species in the samples. The quantitative analysis reveals that 30% of the aluminium is in four-fold coordination in the surfactant-modified LDH. We show that this chemical modification retains the two types of AlO6 sites with a decreased intensity of the site showing the lowest quadrupolar coupling constant. 相似文献
16.
Malgorzata Marjanska Franca Castiglione Jamie D. Walls Alexander Pines 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2002,158(1-2)
Low-power phase-modulated Lee–Goldburg homonuclear decoupling was used to record PDLF spectra of fluorine-substituted benzene derivatives dissolved in nematic thermotropic liquid crystalline solvents. The low-power decoupling minimizes sample heating during RF irradiation while still achieving highly resolved PDLF spectra. The method is illustrated by recording spectra for 1,3-dichloro-4-fluoro-5-nitrobenzene, 1,3-dichloro-4-fluorobenzene, and 1,2-difluorobenzene dissolved in different nematic solvents. 相似文献
17.
We investigate the nonsequential double ionization(NSDI) of linear triatomic molecules by the counter-rotating two-color circularly polarized(CRTC) laser fields with a classical ensemble method. The results of the simulation reveal that NSDI yield strongly connected with the relative phase. The trajectory tracking method shows that the return time of the electron is controlled by the relative phase. In addition, when we change the CRTC laser wavelengths, the relative phase of the maximum and minimum yield of NSDI also changes. This shows that the influence of the Coulomb potential in the triatomic molecules on the electron return process cannot be ignored. This work will effectively promote the electronic dynamics study of NSDI for the triatomic molecule. 相似文献
18.
Feng Deng Guoxing Wang Youru Du Chaohui Ye Yuhua Kong Xiaoding Li 《Solid state nuclear magnetic resonance》1997,7(4):281-290
The modification of surface hydroxyl groups with sodium in a series of Na2CO3-γ-Al2O3 catalysts was investigated as a function of both the Na2CO3 loading and the calcination temperature by means of 1H magic angle spinning (MAS) and 1H[23Na] spin-echo double resonance NMR techniques. The 1H NMR experiments revealed that sodium ions are homogeneously distributed over the alumina surface and closely coordinated with the surface hydroxyl groups. In the catalysts calcined at 250 °C, the acidic hydroxyl groups (with a chemical shift of 2.0 ppm) are preferentially associated with sodium ions at low Na2CO3 coverages (5 and 10%), while both the acidic and the basic (0 ppm) hydroxyl groups are accessible for sodium ions at high coverages (15 and 20%). The coordination causes a low-field shift of about 2 ppm in the 1H MAS spectra, and a broad signal at 4.5 ppm appears. It is interesting that the 4.5 ppm signal is completely suppressed in the 1H[23Na] MAS experiments, providing direct evidence that a strong interaction exists between adsorbed sodium ions and the surface hydroxyl groups. Increasing the calcination temperature to 450 °C results in preferential removal of the acidic hydroxyl groups, and only the most basic hydroxyl groups remain when the calcination temperature is raised to 600 °C. This is attributed to the formation of the coordinated species
which enhances the acidity of the surface hydroxyl groups and prompts their dehydroxylation, especially at high calcination temperature. Correlation of the 1H MAS NMR results and catalytic activity measurements indicates that the basic hydroxyl groups are essential for the carbonyl sulfide hydrolysis reaction. 相似文献