首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of nickel coating on the mechanical behaviors of armchair single-walled carbon nanotubes (SWCNTs) and their embedded gold matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of SWCNTs obviously decrease after nickel coating. For armchair SWCNTs, the decreased ratio of the Young's moduli of SWCNTs with smaller radius is larger than that of SWCNTs with larger radius. A comparison is made between the response to Young's modulus of a composite with parallel embedded nanotube and the response of a composite with vertically embedded nanotube. The results show that the uncoated SWCNT can enhance the Young's modulus of composite under the condition of parallel embedment, but such improvement disappears under the condition of vertical embedment because the interaction between SWCNT and gold matrix is too weak for effective load transfer. However, the nickel-coated SWCNT can indeed significantly improve the composite behavior.  相似文献   

2.
使用分子动力学方法模拟了单壁碳纳米管的拉伸变形行为和泊松比,并从单壁碳纳米管晶胞单元的结构特征角度,系统分析了管径、螺旋性和应变对力学性能的影响.模拟结果显示,单臂性碳纳米管(8,8)-(22,22)和锯齿性碳纳米管(9,0)-(29,0)的拉伸弹性变形可以分别达到35%-38%和20%-27%,拉伸条件下这些碳纳米管的弹性模量随管径的增大从960 GPa下降到750 GPa,并且锯齿性碳纳米管的弹性模量比单臂性碳纳米管的弹性模量要高.通过对三根具有相同直径和不同螺旋性的碳纳米管(9,9),(12,6)和(16,0)分别在拉伸和压缩条件下的模拟发现,随着变形的增大,碳纳米管的泊松比将减小;在相同的拉伸应变下,碳纳米管的泊松比随其螺旋角的减小而减小,而在相同的压缩应变下,碳纳米管的泊松比随其螺旋角的减小而增大.  相似文献   

3.
利用密度泛函理论系统的研究了单壁碳纳米管的曲率对Rh原子在锯齿型碳管内外的吸附行为, 发现Rh原子在管外吸附比管内稳定; 随着碳管管径的增加, 曲率减小, 管内外吸附能的差值逐渐减小, 接近Rh原子在石墨烯上的吸附能. 电荷密度分析表明, 由于卷曲效应使碳纳米管管外的电荷密度大于管内, 随着曲率减小, 这种差别逐渐减小. 管内外吸附Rh原子的Bader电荷差值及局域态密度差别亦随着曲率的下降而减小, 这与Rh原子在管内外吸附能的变化规律相一致.  相似文献   

4.
杨培芳  吴锋民  滕波涛  刘莎  蒋健中 《中国物理 B》2010,19(9):97104-097104
This paper systematically studies the rolling effects of the (n, n) single-wall carbon nanotubes (SWCNT) with different curvatures on Rh adsorption behaviours by using density functional theory. The outside charge densities of SWCNTs are found to be higher than those inside, and the differences decrease with the increase of the tube radius. This electronic property led to the discovery that the outside adsorption energies are higher than the inside ones, and that the differences are reduced with the increase of the tube radius. Partial density of states and charge density difference indicate that these strong interactions induce electron transfer between Rh atoms and SWCNTs.  相似文献   

5.
In this article, mechanical properties of single-walled carbon nanotubes (SWCNTs) with various radiuses under tensile, compressive and lateral loads are considered. Stress–strain curve, elastic modulus, tensile, compressive and rotational stiffness, buckling behaviour, and critical axial compressive load and pressure of eight different zigzag and armchair SWCNTs are investigated to figure out the effect of radius and chirality on mechanical properties of nanotubes. Using molecular dynamic simulation (MDS) method, it can be explained that SWCNTs have higher Young’s modulus and tensile stiffness than compressive elastic modulus and compressive stiffness. Critical axial force of zigzag SWCNT is independent from the radius, but that of armchair type rises by increasing of radius, also these two types show different buckling modes.  相似文献   

6.
This study adopts the Tersoff-Brenner interaction potential function in a series of molecular dynamic (MD) simulations which investigate the mechanical properties under tensile loading of (10,0) zigzag, (8,3) chiral and (6,6) armchair single-walled carbon nanotubes (SWCNTs) of similar radii. The Young's modulus values of the (10,0), (8,3) and (6,6) nanotubes are determined to be approximately 0.92, 0.95, and 1.03 TPa, respectively. Of these nanotubes, the results reveal that the (6,6) nanotube possesses the best tensile strength and toughness properties under tension. Although it is noted that under small tensions, the mechanical properties such as Young's modulus are essentially insensitive to helicity, under larger plastic deformations, they may be influenced by helicity effects. Finally, the simulations demonstrate that the values of the majority of the considered mechanical properties decrease with increasing temperature and increasing vacancy percentage.  相似文献   

7.
The mechanical response of 15 single wall carbon nanotube (SWCNT) ropes under tensile load was measured. For 8 of these ropes strain data were obtained and they broke at strain values of 5.3% or lower. The force-strain data are well fit by a model that assumes the load is carried by the SWCNTs on the perimeter of each rope. This model provides an average breaking strength of SWCNTs on the perimeter of each rope; the 15 values range from 13 to 52 GPa (mean 30 GPa). Based on the same model the 8 average Young's modulus values determined range from 320 to 1470 GPa (mean 1002 GPa).  相似文献   

8.
《Physics letters. A》2014,378(5-6):570-576
The elastic properties of single walled carbon nanotube (SWCNT) with surrounding water interactions are studied using molecular dynamics simulation technique. The compressive loading characteristic of carbon nanotubes (CNTs) in a fluidic medium such as water is critical for its role in determining the lifetime and stability of CNT based nano-fluidic devices. In this paper, we conducted a comprehensive analysis on the effect of geometry, chirality and density of encapsulated water on the elastic properties of SWCNT. Our studies show that defect density and distribution can strongly impact the compressive resistance of SWCNTs in water. Further studies were conducted on capped SWCNTs with varying densities of encapsulated water, which is necessary to understand the strength of CNT as a potential drug carrier. The results obtained from this paper will help determining the potential applications of CNTs in the field of nano-electromechanical systems (NEMS) such as nano-biological and nano-fluidic devices.  相似文献   

9.
Poly(buthylene terephthalate)(PBT)/single wall carbon nanotubes (SWCNTs) composite nanofibers were prepared by electrospinning. The effect of carbon nanotubes on the morphology, crystallization, and mechanical properties of the electrospun composite nanofibers were investigated by SEM, DSC, and tensile testing, respectively. SEM observations indicated that the presence of SWCNTs resulted in finer nanofibers for lower loading; however, a broader distribution, especially for the higher diameter ranges was found for nanofibers with higher amounts of carbon nanotubes. SWCNTs accelerated crystallization and acted as a nucleating agent; the degree of crystallinity increased with increasing content of SWCNTs, followed by a moderate decrease at higher content. Specific tensile strength and modulus of the PBT/SWCNTs composite nanofibers mats were higher than that of neat PBT nanofibers mat. However, the elongation at break of composite nanofibers mats was lower than that of the neat PBT nanofibers mat.  相似文献   

10.
Using molecular dynamic simulation (MDS), effects of chirality and Van der Waals interaction on Young's modulus, elastic compressive modulus, bending, tensile, and compressive stiffness, and critical axial force of double-walled carbon nanotube (DWCNT) and its inner and outer tubes are considered. Achieving the highest safety factor, mechanical properties have been investigated under applied load on both inner and outer tubes simultaneously and on each one of them separately. Results indicate that as a compressive element, DWCNT is more beneficial than single-walled carbon nanotube (SWCNT) since it carries two times higher compression before buckling. Except critical axial pressure and tensile stiffness, in other parameters zigzag DWCNT shows higher amounts than armchair type. Outer tube has lower strength than inner tube; therefore, most reliable design of nanostructures can be attained if the mechanical properties of outer tube taken as the properties of DWCNT.  相似文献   

11.
In the present study, a spring-based finite element model is formulated and utilized to predict the stress–strain behavior of single-layer graphene. Generalized force–generalized displacement behavior of the developed nonlinear springs follows the relation between the first derivative of the potential energy and the corresponding bond deformation, describing interatomic interactions. A number of different loading cases are examined in order to predict mechanical properties and characterize the graphene sheet. Predicted Young's and shear moduli, tensile and shear strength, tensile and shear failure strain, etc., under tension, compression and pure shear, are compared to results found in the literature, which are based on numerical, analytical or experimental methodologies. In all the above loading cases the graphene sheet is examined as a virtually orthotropic material, exhibiting different material properties in the armchair and zigzag directions. Different behaviors in tension and compression, as suggested by the modified Morse atomic bond stretching potential, are illustrated by the predicted stress–strain curves.  相似文献   

12.
Effect of single wall carbon nanotubes (SWCNTs) on electro-optical performance of a ferroelectric liquid crystal (FLC) has been studied. Voltage dependent spontaneous polarization and response time measurement has been made for the pure and SWCNT doped FLC system. Dielectric measurement has also been performed to understand the existing interaction between SWCNTs and FLC molecules. The results have shown increase in the value of spontaneous polarization and relative permittivity with slight slower response for the doped system. The observed properties of doped system revealed that the SWCNTs can perform well with FLC at low applied electric field to enhance the performance of LC devices.  相似文献   

13.
By employing molecular mechanics and molecular dynamics simulations, we investigate the radial collapses and elasticities of different chiral single-walled carbon nanotubes(SWCNTs) with divacancy, and 5-8-5 defects. It is found that divacancy and 5-8-5 defect can reduce the collapse pressure(Pc) of SWCNT(10, 10) while 5-8-5 defect can greatly increase Pc of SWCNT(17, 0). For example, 5-8-5 defect can make Pc of SWCNT(17, 0) increase by 500%. A model is established to understand the effects of chirality, divacancy, and 5-8-5 defect on radial collapse of SWCNTs. The results are particularly of value for understanding the mechanical behavior of SWCNT with divacancy, and the 5-8-5 defect that may be considered as a filler of high loading composites.  相似文献   

14.
Through floating catalyst chemical vapour deposition(CVD) method,well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280℃). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace.The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.  相似文献   

15.
As a primary constituent of soft rocks, kaolinite plays an important role in large deformations of underground structures, which usually leads to serious safety risks. This paper investigates the deformation and failure processes of kaolinite under tension using molecular dynamics simulations. Based on the atomistic scale of these deformation and failure processes and their stressstrain curves, Young's moduli and strengths in three crystal directions and the surface energy of the(001) plane were obtained,which were consistent with theoretical predictions. The number of broken bonds and their corresponding broken sequences were determined. The results of our study indicated that as more bonds break during tension, the initiation of crack led to a sharp decrease in stress. We also explored the influence of temperature on the mechanical properties of kaolinite, which indicated that as temperature increased, the tensile strength and Young's modulus decreased.  相似文献   

16.
In this paper, a Si-doped single-walled carbon nanotube (SWCNT) (7,7) and several perfect armchair SWCNTs are investigated using the classical molecular dynamics simulations method. The inter-atomic short-range interaction is represented by empirical Tersoff bond order potential. The computational results show that the axial Young's modulus of the perfect SWCNTs are in the range of 1.099 ± 0.005 TPa, which is in good agreement with the existing experimental results. From our simulation, the Si-doping decreases the Young's modulus of SWCNT, and with the increased strain levels, the effect of Si-doped layer in enhancing the local stress level increases. The Young's modulus of armchair SWCNTs are weakly affected by tube radius.  相似文献   

17.
The effects of nickel coating on the torsional behaviors of single-walled carbon nanotubes (SWCNTs) subject to torsion motion are investigated using the molecular dynamics (MD) simulation method. The simulation results show that regardless of chirality, defect or radius, nickel coating can considerably enhance the critical torque of SWCNTs. However, by comparing the critical torsion angle between nickel-coated SWCNTs and corresponding pristine SWCNTs, it is found that nickel coating in small-radius nanotubes does induce a reduction in the critical torsion angle. The results also show that the structural failure of nickel coated imperfect (9,0) SWCNT occurs at an obviously higher critical torque in comparison with uncoated (9,0) SWCNT with a vacancy defect. Furthermore, we also find that the critical torque of a short nickel coated SWCNT is bigger than that of a long one, while the critical torsion angle for a short tube is smaller than that for a long one.  相似文献   

18.
Yutao Liu 《中国物理 B》2022,31(4):46105-046105
Two-phase γ-TiAl/α2-Ti3Al lamellar intermetallics have attracted considerable attention because of their excellent strength and plasticity. However, the exact deformation mechanisms remain to be investigated. In this paper, a solidified lamellar Ti-Al alloy with lamellar orientation at 0°, 17°, and 73° with respect to the loading direction was stretched by utilizing molecular dynamics (MD) simulations. The results show that the mechanical properties of the sample are considerably influenced by solidified defects and tensile directions. The structure deformation and fracture were primarily attributed to an intrinsic stacking fault (ISF) accompanied by the nucleated Shockley dislocation, and the adjacent extrinsic stacking fault (ESF) and ISF formed by solidification tend to form large HCP structures during the tensile process loading at 73°. Moreover, cleavage cracking easily occurs on the γ/α2 interface under tensile deformation. The fracture loading mechanism at 17° is grain boundary slide whereas, at 73° and 0°, the dislocation piles up to form a dislocation junction.  相似文献   

19.
Carbon nanotubes (CNTs) possess extremely high mechanical properties and could be the ultimate reinforcing materials for the development of nanocomposites. In this work, a Finite Element (FE) model based on the molecular mechanics theory was developed to evaluate tensile properties of single-walled carbon nanotubes (SWCNTs). The deformation and fracture of carbon nanotubes under tensile strain conditions were studied by common FE software, Ansys. In this model, individual carbon nanotube was simulated as a frame-like structure, and the primary bonds between two nearest-neighboring atoms were treated as beam elements. The beam element properties were determined via the concept of energy equivalence between molecular dynamics and structural mechanics. So far, several researches have studied the elastic behavior of CNTs, and its nonlinearity is not well understood. The novelty of the model lies on the use of nonlinear beam elements to evaluate SWNTs tensile failure. The obtained calculated mechanical properties show good agreement with existing numerical and experimental results.  相似文献   

20.
Electron emission properties of single-walled carbon nanotubes (SWCNTs) assembled on a tungsten tip were investigated using field emission microscopy (FEM). The transmission electron microscopy (TEM) micrograph confirmed the existence of an SWCNT bundle on the W tip. Under appropriate experimental conditions,a series of FEM patterns with atomic resolution were obtained. These patterns arose possibly from the field emission of the open end of an individual (16,0) SWCNT protruding from the SWCNT bundle. The magnification factor and the resolution under our experimental conditions were calculated theoretically. If the value of the compression factor β was set at β= 1.76, the calculated value of the magnification factor was in agreement with the measured value. The resolving powerof FEM was determined by the resolution equation given by Gomer. The resolutionof 0.277 nm could be achieved under the typical electric field of 5.0×107 V/cm, which was close to the interatomic separation 0.246 nm between carbon atoms along the zigzag edge at the open end for the (16, 0) SWCNT. Consequently, our experimental results were further supported by our theoretical calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号