首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Nanostructure titanium dioxide (TiO2) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO2 and Ag-TiO2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO2. The positive effect of silver on the photocatalytic activity of TiO2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO2 surface and therefore enhances the photocatalytic activity of the synthesized TiO2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO2 and 96% for Ag-TiO2.  相似文献   

2.
In this work, we report the synthesis of nickel titanate nanoparticles loaded on nanomesoporous MCM-41 nanoparticles to determine the effect of MCM-41 nanoparticles on the photocatalytic activities of nickel titanate (NiTiO3) nanoparticles by using simple solid-state dispersion (SSD) method. Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV–Vis diffuse reflectance spectra (DRS) analysis were used to characterize the size and morphology of the obtained nanocomposite. The photocatalytic activity (PA) of the as-prepared NiTiO3 loaded on MCM-41 was evaluated by degradation of the methylene blue under irradiation of UV and visible light. The results showed that NiTiO3 loaded on nanosize MCM-41 has higher photocatalytic activity than that of NiTiO3 nanoparticles.  相似文献   

3.
We have successfully devised a simple method to synthesize La0.8Sr0.2MnO3 with nitrogen-doped graphene composites (LSM/NrGO) and investigated their catalytic performance in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Interestingly, the LSM/NrGO composites demonstrate outstanding catalytic performance in ORR, including high limiting current density and superior onset potential, compared to bare LSM nanocrystals or nitrogen-doped graphene, showing a performance close to that of commercial Pt/C. Moreover, Li-O2 batteries assembled based on the LSM/NrGO catalysts exhibited brilliant performance, especially during long-term cycling, where the terminal discharge voltage still exceeded 2.31 V after 360 cycles. The excellent catalytic performance is mainly attributed to the large specific surface area (152.24 m2 g?1) of the materials, which provides many catalytic active sites, and the mesoporous structure (2 to 50 nm), which can facilitate the penetration of oxygen molecules into the surface of the nanoparticles and mass transfer.  相似文献   

4.
《Current Applied Physics》2018,18(2):163-169
Nitrogen-doped TiO2 coatings on reduced graphene oxide were prepared via a sonochemical synthesis and hydrothermal process. The nanocomposites showed improved photocatalytic activity due to their large specific surface areas (185–447 m2/g), the presence of TiO2 in the anatase phase, and a quenched photoluminescence peak. In particular, GN3-TiO2 (nitrogen-doped TiO2 coatings on rGO with 3 ml of titanium (IV) isopropoxide) exhibited the best photocatalytic efficiency and degradation rate among the materials prepared. With nitrogen-doped on the reduced graphene oxide surface, the photocatalytic activity is enhanced approximately 17.8 times compared to that of the pristine TiO2. The dramatic enhancement of activity is attributed to the nitrogen contents and rGO effectively promoting charge-separation efficiency and providing abundant catalytically active sites to enhance the reactivity. The composites also showed improved pollutant adsorption capacity, electron–hole pair lifetime, light absorption capability, and absorbance of visible light.  相似文献   

5.
A new and relatively general route was developed to fabricate graphene oxide (GO)-Fe3O4 hybrid. X-ray diffraction, transmission electron morphology, X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectrum were used to demonstrate the successful attachment of iron oxide nanoparticles to GO sheets. Transmission electron microscopy observation indicates that the size of the Fe3O4 nanoparticles was about 2.7 nm with narrow size distribution. Moreover, this hybrid shows superparamagnetic property and allows the rapid separation under an external-magnetic field. In addition, the method could be extended to further development of graphene-based nanoelectronics.  相似文献   

6.
The nitrogen and fluorine co-doped TiO2 (N-F-TiO2) nanoparticles of anatase crystalline structure were prepared by a facile method of (NH4)2TiF6 pyrolysis, and characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy etc. With the increase of calcination temperature, (NH4)2TiF6 decomposed into TiOF2 and NH4TiOF3 at first, and then formed anatase-type TiO2 with thin sheet morphology. H3BO3 as oxygen source can promote the formation of anatase TiO2, but decrease the F content in the N-F-TiO2 materials due to the formation of volatile BF3 during the precursor decomposition. The photocatalytic activity of the obtained N-F-TiO2 samples was evaluated by the methylene blue degradation under visible light, and all the samples exhibited much higher photocatalytic activity than P25. Moreover, the merits and disadvantages of this proposed method to prepare doped TiO2 are discussed.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(5):1849-1857
Novel material PtSe2–graphene/TiO2 nanocomposites were successfully synthesized through a facile ultrasonic assisted method. The prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy dispersive X-ray (EDX),transmission electron microscopy (TEM), Raman spectroscopic analysis, UV–vis absorbance spectra and UV–vis diffuse reflectance spectra (DRS) analysis were obtained. The catalytic behavior was investigated through the decomposition of rhodamine B (Rh.B) as a standard dye. Enhanced photocatalytic activities were observed by increasing the weight% of graphene in the PtSe2–graphene/TiO2 nanocomposites. We observed that the coupling of TiO2 with PtSe2–graphene alter the optical properties by observing a precise band gap in the visible range.  相似文献   

8.
In order to improve visible light photocatalytic activities of the nanometer TiO2, a novel and efficient Cr,S-codoped TiO2 (Cr-TiO2-S) photocatalyst was prepared by precipitation-doping method. The crystalline structure, morphology, particle size, and chemical structure of Cr-TiO2-S were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) techniques, respectively. Results indicate that the doping of Cr and S, cause absorption edge shifts to the visible light region (λ > 420 nm) compare to the pure TiO2, reduces average size of the TiO2 crystallites, enhances desired lattice distortion of Ti, promotes separation of photo-induced electron and hole pair, and thus improves pollutant decomposition under visible light irradiation. The photocatalytic activities of Cr-TiO2-S nanoparticles were evaluated using the photodegradation of methyl orange (MO) as probe reaction under the irradiation of UV and visible light and it was observed that the Cr-TiO2-S photocatalyst shows higher visible photocatalytic activity than the pure TiO2. The optimal Cr-TiO2-S concentration to obtain the highest photocatalytic activity was 5 mol% for both of Cr and S.  相似文献   

9.
Photocatalytic active titanium dioxide (TiO2)/zinc oxide (ZnO) composite was prepared by homogeneous hydrolysis of a mixture of titanium oxo-sulphate and zinc sulphate in aqueous solutions with thioacetamide and subsequent annealing at the temperature of 600 °C. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission microscopy (HRTEM). Nitrogen adsorption-desorption was used for surface area (Brunauer-Emmett-Teller—BET) and porosity determination. The photoactivity of the prepared TiO2/ZnO samples was assessed by the photocatalytic decomposition of Orange II dye in an aqueous slurry under irradiation of 254 and 365 nm wavelengths. Under the same conditions, the photocatalytic activity of a commercially available photocatalyst (Degussa P25), the pure anatase TiO2 nanoparticles and cubic ZnO were examined.  相似文献   

10.
《Current Applied Physics》2018,18(9):1026-1033
Reduced graphene oxide/Strontium titanate (RGO/SrTiO3) heterostructured nanocomposite was synthesized by coupling Hummer's synthesized graphene oxide (GO) with hydrothermally synthesized SrTiO3 nanoparticles (SrTiO3) through a facile and unique high energy ultrasonication technique using triple solvents. XRD result confirmed the successful formation of pure, single phase and primitive cubic crystal structure RGO/SrTiO3 heterostructured nanocomposite. SEM result confirmed the successful intercalation of SrTiO3 nanoparticles over the two dimensional networks of RGO nanosheets. The synergistic and beneficial interactions between SrTiO3 and RGO resulted in smaller crystallite size (53 nm), reduced band gap (2.87 eV) and larger specific surface area (31 m2/g) than that of as prepared pure SrTiO3 nanoparticles. RGO strongly influenced the photocatalytic activity of SrTiO3 and hence RGO/SrTiO3 heterostructured nanocomposite exhibited greater efficiency in degrading Rhodamine B (RhB) and Rose Bengal (RB) organic dye pollutants under natural sunlight irradiation than that of pure SrTiO3 nanoparticles.  相似文献   

11.
ZnO nanoparticles were prepared by a simple chemical synthesis route. Subsequently, SiO2 layers were successfully coated onto the surface of ZnO nanoparticles to modify the photocatalytic activity in acidic or alkaline solutions. The obtained particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS) and zeta potential. It was found that ultrafine core/shell structured ZnO/SiO2 nanoparticles were successfully obtained. The photocatalytic performance of ZnO/SiO2 core/shell structured nanoparticles in Rhodamine B aqueous solution at varied pH value were also investigated. Compared with uncoated ZnO nanoparticles, core/shell structured ZnO/SiO2 nanoparticles with thinner SiO2 shell possess improved stability and relatively better photocatalytic activity in acidic or alkaline solutions, which would broaden its potential application in pollutant treatment.  相似文献   

12.
Novel graphene–TiO2 (GR–TiO2) composite photocatalysts were synthesized by hydrothermal method. During the hydrothermal process, both the reduction of graphene oxide and loading of TiO2 nanoparticles on graphene were achieved. The structure, surface morphology, chemical composition and optical properties of composites were studied using XRD, TEM, XPS, DRS and PL spectroscopy. The absorption edge of TiO2 shifted to visible-light region with increasing amount of graphene in the composite samples. The photocatalytic degradation of methyl orange (MO) was carried out using graphene–TiO2 composite catalysts in order to study the photocatalytic efficiency. The results showed that GR–TiO2 composites can efficiently photodegrade MO, showing an enhanced photocatalytic activity over pure TiO2 under visible-light irradiation. The enhanced photocatalytic activity of the composite catalysts might be attributed to great adsorptivity of dyes, extended light absorption range and efficient charge separation due to giant π-conjugation system and two-dimensional planar structure of graphene.  相似文献   

13.
The BiPO4/reduced graphene oxide (RGO) nanocomposites were prepared by a facile solvothermal approach. The prepared samples were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy, electrochemical impedance spectra, and Mott–Schottky and the photoluminescence spectra. A large quantity of BiPO4 nanoparticles with sizes of ca. 150 nm were well dispersed on the RGO nanosheets. The absorbance of the BiPO4/RGO nanocomposites is largely enhanced in the range of 400–800 nm compared with that of BiPO4, and the BiPO4/RGO showed better photocatalytic activities under simulated sunlight irradiation than the BiPO4 nanocrystals.  相似文献   

14.
Composite photocatalysts composed of TiO2 and ZrO2 have been prepared via the sol-gel method. The as-prepared nanocomposites are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectrometry and fluorescence emission spectra. The results shows that TiO2/ZrO2 nanocomposites are composed of mainly anatase titania and tetragonal ZrO2. Incorporating TiO2 particles with ZrO2 plays an important role in promoting the formation of nanoparticles with an anatase structure and leads to decreased fluorescence emission intensity. Most of the TiO2/ZrO2 nanocomposites exhibited comparable photocatalytic activity compared with commercial TiO2 for the degradation aqueous methyl orange (MO) under ultraviolet irradiation, while the composite with Zr/Ti mass ratio of 15.2% shows the highest photocatalytic performances. Furthermore, the as-prepared nanocomposites can be reused with little photocatalytic activity loss. Without any further treatment besides rinsing, the photocatalytic activity of TiO2/ZrO2 (15.2%) composites is still higher than after five-cycle utilization.  相似文献   

15.
Fluoropolymer poly-vinylidene-fluoride modified TiO2 (PVDF/TiO2) were prepared via a simple chemisorption approach and characterized by thermo gravimetric analyse, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence spectra. The modified mechanism and the photocatalytic selectivity of the PVDF/TiO2 were studied. The existence of Ti-F coordination bond on the interface between TiO2 and PVDF was confirmed. For the PVDF modification, the photocatalytic degradation (PCD) of cationic dye was greatly enhanced, and the PCD of anionic dye was obviously inhibited. PVDF/TiO2 shows high photocatalytic selectivity than that of TiO2 by degrading mixed solution of cationic dyes MB and anionic dyes MO. The selectivity can be tuned by changing the PVDF modification amount.  相似文献   

16.
Graphene-based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this paper, we present a facile approach for the preparation of graphene/CdS nanocomposites through simple reflux processes, in which thiourea (CS(NH2)2) and thioacetamide (C2H5NS) act as a sulphide source, respectively. The samples were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), ultraviolet-visible (UV-vis) spectroscopy and thermogravimetry analysis. It was shown that in the nanocomposites, the CdS nanoparticles were densely and uniformly deposited on the graphene sheets, and the sulphide source used has a great influence on the morphology, structure and property of the graphene/CdS nanocomposites. The good distribution of CdS nanoparticles on graphene sheets guarantees the efficient optoelectronic properties of graphene/CdS and would be promising for practical applications in future nanotechnology.  相似文献   

17.
In order to get photocatalysts with desired morphologies and enhanced visible light responses, the Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles were prepared by modified hydrothermal and solvothermal method, respectively. The microstructures and morphologies of TiO2 crystals can be controlled by restraining the hydrolytic reaction rates. The Fe-doped photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy (UV-vis), N2 adsorption-desorption measurement (BET), and photoluminescence spectroscopy (PL). The refinements of the microstructures and morphologies result in the enhancement of the specific surface areas. The Fe3+-dopants in TiO2 lattices not only lead to the significantly extending of the optical responses from UV to visible region but also diminish the recombination rates of the electrons and holes. The photocatalytic activities were evaluated by photocatalytic decomposition of formaldehyde in air under visible light illumination. Compared with P25 (TiO2) and N-doped TiO2 nanoparticles, the Fe-doped photocatalysts show high photocatalytic activities under visible light.  相似文献   

18.
Abstract

Titanium dioxide (TiO2) was doped with a nonmetalic element, boron (B), and the boron doped TiO2 (B-TiO2) was combined with polyaniline (Pani) through an in-situ polymerization technique. The photocatalytic activity of the prepared samples was monitored by the degradation of methylene blue under UV light irradiation. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to reveal the effect of boron doping on the crystalline and chemical structure of the photocatalyst, respectively. The morphological and elemental compositional characteristics of the samples were evaluated using field emission scaning electron microscopy (FE-SEM) and energy dispersive x-ray analysis. The optical band gap energy of the prepared samples was obtained by UV-Visible (UV-Vis) spectroscopy. B-TiO2 exhibited enhanced photocatalytic performance compared to the undoped photocatalyst. Furthermore, compared with TiO2 and B-TiO2, Pani/B-TiO2 displayed superior photocatalytic activity. The composite achieved almost 26% methylene blue degradation within 150?minutes. Although the boron doping enhanced the crystallinity of TiO2 slightly, it did not affect the morphology. FTIR confirmed the presence of tri-coordinated interstitial boron in the Ti–O–B bonds. The UV-Vis spectra displayed a red shift with the incorporation of the boron atoms. The incorporation of the boron atoms in the TiO2 crystal structure are suggested to promote the separation of the photoinduced electron-hole pairs, a possible reason for the enhanced photocatalytic activity. B-TiO2 and its composite with polyaniline could be considered as a promising photocatalyst to remove organic dyes from the wastewater.  相似文献   

19.
The present work deals with the synthesis of titanium dioxide nanoparticles doped with Fe and Ce using sonochemical approach and its comparison with the conventional doping method. The prepared samples have been characterized using X-ray diffraction (XRD), FTIR, transmission electron microscopy (TEM) and UV–visible spectra (UV–vis). The effectiveness of the synthesized catalyst for the photocatalytic degradation of crystal violet dye has also been investigated considering crystal violet degradation as the model reaction. It has been observed that the catalysts prepared by sonochemical method exhibit higher photocatalytic activity as compared to the catalysts prepared by the conventional methods. Also the Ce-doped TiO2 exhibits maximum photocatalytic activity followed by Fe-doped TiO2 and the least activity was observed for only TiO2. The presence of Fe and Ce in the TiO2 structure results in a significant absorption shift towards the visible region. Detailed investigations on the degradation indicated that an optimal dosage with 0.8 mol% doping of Ce and 1.2 mol% doping of Fe in TiO2 results in higher extents of degradation. Kinetic studies also established that the photocatalytic degradation followed the pseudo first-order reaction kinetics. Overall it has been established that ultrasound assisted synthesis of doped photocatalyst significantly enhances the photocatalytic activity.  相似文献   

20.
Branched rutile TiO2 nanorod arrays were directly synthesized on the F-doped tin oxide (FTO) substrate through a two-step hydrothermal treatment by a seeding method with TiO2-nanorods as seeds. The samples were characterized respectively by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and field-emission scanning electron microscopy (FESEM). Results showed that TiO2 nanorods with nanobranches (TiO2-NB) grew vertically on the FTO substrate. XRD and HRTEM results confirmed that the TiO2-NB arrays were single-crystalline rutile. The optical properties of the samples were studied with a UV-vis spectrometer. The photocatalytic activity of the TiO2-NB film is better than that of P25 particulate film. Direct electrical pathway and improved light-harvesting efficiency were crucial for the superior photocatalytic activity of the TiO2-NB arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号