首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The infrared spectrum of isotopically enriched CH281BrF was investigated in the ν3 and ν8 region between 1150 and 1370 cm?1 at a resolution of 0.003 cm?1. The ν3 vibration of symmetry species A gives rise to an a-/b-hybrid band with a-type predominance, while the ν8 mode of A symmetry produces c-type absorption. Due to the proximity of the band origins to those of closely lying overtones and combination bands, the v3 = 1 and v8 = 1 levels were found perturbed through Coriolis resonance by the v5 = 2 (A) and v6 = v9 = 1 (A) states, respectively. The spectral analysis resulted in the identification of 3132 transitions (J ≤ 98 and Ka ≤ 14) for the ν3 and 2958 transitions (J ≤ 68 and Ka ≤ 19) for the ν8 bands. The assigned data were fitted using the Watson's A-reduction Hamiltonian in the Ir representation and the perturbation operators. Although no transitions belonging to the perturbers were observed, the band origins and excited state parameters for fundamentals and ‘dark states’ together with coupling terms for the ν3/2ν5 and ν86 + ν9 dyads were determined.  相似文献   

3.
The strong infrared absorption in the ν3 S–F stretching region of sulphur hexafluoride (SF6) near 948 cm?1 makes it a powerful greenhouse gas. Although its present concentration in the atmosphere is very low, it is increasing rapidly, due to industrial pollution. The ground state population of this heavy species is only 32% at room temperature and thus many hot bands are present. Consequently, a reliable remote-sensing spectroscopic detection and monitoring of this species require an accurate modelling of these hot bands. We used two experimental set-ups at the SOLEIL French synchrotron facility to record some difference and combination bands of SF6: (1) a new cryogenic multiple pass cell with 93 m optical path length and regulated at 163 ± 2 K temperature and (2) the Jet-AILES supersonic expansion set-up. With this, we could obtain high-resolution absorption spectra of the ν3 ? ν1, ν3 ? ν2, ν1 + ν3 and ν2 + ν3 bands at low temperature. These spectra could be assigned and analysed, thanks to the SPVIEW and XTDS computer programs developed in Dijon. We performed two global fits of effective Hamiltonian parameters. The first one is a global fit of the ground state, ν2, ν3, ν3 ? ν2, ν2 + ν3, 2ν3 and 2ν3 ? ν3 rovibrational parameters, using the present spectra and previous infrared, Raman and two-photon absorption data. This allows a consistent refinement of the effective Hamiltonian parameters for all the implied vibrational levels and a new simulation of the 2ν3 + ν2 ? ν2 hot band. The second global fit involves the present ν3 ? ν1 and ν1 + ν3 lines, together with previous ν1 Raman data, in order to obtain refined ν1 parameters and also ν1 + ν3 parameters in a consistent way. This allows to simulate the ν3 + ν1 ? ν1 hot band.  相似文献   

4.
The high-resolution Fourier transform infrared spectrum of CH2D79Br has been recorded and analysed in the region of the ν4 and ν8 fundamentals located in the range 1125?1360 cm?1. The strong ν4 band, centred at 1225 cm?1, shows an a/b-hybrid structure with predominant a-type character, whereas ν8, at 1253 cm?1, generates a c-type contour comparable in intensity to the b-type component of ν4. The upper states of these fundamentals are coupled through a- and b-type Coriolis resonances; further complications in this band system arise from perturbations due to the ν6 = 2 (1183 cm?1) and ν5 = ν6 = 1 (1359 cm?1) dark states. The former interacts with ν8 = 1 by b-type Coriolis coupling, whereas the latter perturbs the ν4 = 1 and ν8 = 1 levels by anharmonic and a-type Coriolis resonances, respectively. Accurate upper state parameters and interaction terms have been determined for the tetrad system ν48/2ν656 by also including in the dataset the assigned transitions of the 2ν66 and ν566 hot bands obtained from previous analysis.  相似文献   

5.
6.
The gas-phase infrared spectra of natural CH2 = CClF have been measured in the v 6 and 2v 12 band regions (930–1050 cm?1) by high-resolution Fourier transform spectroscopy at room temperature. 1-Chloro-1-fluoroethylene is a planar asymmetric rotor (κ = ?0.54) belonging to the symmetry point group Cs and the vibrations investigated of symmetry species A′ give rise to a/b-hybrid bands with contributions of comparable intensity from both the components.

The rovibrational analysis of the fine structure led to the identification of 1894 (J ? 73, Ka ? 20) and 718 (J ? 53, Ka ? 8) transitions for the v 6 and 2v 12 bands of the 35Cl isotopic species, respectively. Using the Watson's A-reduction Hamiltonian in the Ir representation a set of accurate spectroscopic parameters for both the excited states u 6 = 1 and u12 = 2 of 35Cl has been obtained for the first time. Transitions of 37Cl isotopomer could also be assigned in the Q branch region of the 2v 12 overtone; the determined band origin shift of 0.782 cm?1 towards the lower wavenumbers led to describing the v 12 fundamental as a vibration mainly involving the CFCl bending motion.  相似文献   

7.
8.
ABSTRACT

The Fourier transform infrared (FTIR) spectrum of vinyl fluoride, H2C=CHF, has been widely investigated in the region of the ν47 combination band around 2800 cm?1 at a resolution of 0.005 cm?1. This vibration of A' symmetry gives rise to an a/b-hybrid band with a predominant a-type component. The rovibrational structure is strongly perturbed and the analysis has been rather complicated since this combination band is involved at least in a seven-level interacting polyad, including the ν8+2ν10, 2ν810, 2ν79, ν7812, ν5910 and ν71012 vibrational states. The study has been further complicated by the absence of transitions coming from the perturbers that were considered as dark states. The spectral analysis resulted in the identification of 936 transitions with J" ≤ 46 and Ka" ≤ 11, all belonging to the a-type component. Most of the assigned data have been fitted using the Watson's A-reduction Hamiltonian in the Ir representation and proper Coriolis perturbation operators. The model employed includes seven different resonances within a complex polyad resonant system and a set of spectroscopic constants for the ν47 combination band, for the dark states, and Coriolis coupling coefficients have been determined.  相似文献   

9.
10.
Infrared measurements have been made on SO2 between 450 and 602 cm−1 with a resolution of 0.005 cm−1. The B-type bands due to the bending mode transitions 010-000 and 020-010 have been assigned and analyzed for the 32S16O2 molecule. A total of 3007 transitions were measured and fit for 32S16O2 with a standard deviation of 0.0004 cm−1. Ro-vibrational constants are given that fit the current measurements and the pure rotational transitions reported in the literature.  相似文献   

11.
Fourier Transform infrared spectra of gaseous natural FClO3 and monoisotopic F35ClO3 have been recorded at 293 and 225 K with a resolution of 0.04 cm−1. Rotational J structure and, in part, K structure were resolved for the parallel fundamentals, combination bands, and overtones ν1, ν2, ν3, ν1 + ν2, ν1 + ν3, ν2 + ν3, 2ν1, 2ν2, and 2ν3. Band origins ν0, anharmonicity constants χij, and vibration-rotation interaction constants αiA and αiB have been determined. For F35ClO3, ν0 values are ν1 = 1063.238(6), ν2 = 716.814(6), and ν3 = 549.877(3) cm−1. No perturbation was found at the present level of accuracy.  相似文献   

12.
Using Fourier transform spectra, the intensities of 428 weak lines belonging to the ν1 + 2ν2, 2ν2 + ν3, 2ν1, ν1 + ν3, 2ν3, and ν1 + ν2 + ν3ν2 bands of the H216O molecule have been measured, between 6300 and 7900 cm−1, with an average uncertainty of 7%.  相似文献   

13.
The isotopically pure form of methyl chloride, CH2D35Cl, was synthesized and investigated by Fourier transform infrared spectroscopy with an unapodized resolution of 0.004?cm?1 in the range 650–900?cm?1, the region of the lowest fundamentals ν5 (827?cm?1) and ν6 (714?cm?1). These distinct bands have been analysed in detail in the P-, Q- and R-branches. In spite of their expected a/b-hybrid nature, both envelopes show the peculiar characteristic of only a-type bands of near prolate asymmetric top molecules. Ground state parameters have been determined for the first time through ground state combination differences from both bands. Parameters of the excited vibrational states and coupling constants have been obtained using a model which accounts for c-type Coriolis interaction and ΔKa?=?±?2 anharmonic resonance.  相似文献   

14.
15.
A large number of transitions in the ν3 and 2ν3ν3 bands of 13CH3F have been recorded at Doppler-limited resolution by means of an infrared laser microwave sideband spectrometer. The sidebands were generated in a CdTe crystal that was simultaneously irradiated by a CO2 infrared laser and a high-power microwave source operating in the 8- to 18-GHz region. The J and K structures of the bands were well resolved except for the lowest K values. Frequencies of transitions involving J values up to 47 and K values up to 16 are reported. Vibration-rotation parameters for the v3 = 0, 1, and 2 states were obtained by fitting to the experimental frequencies. These parameters reproduce the experimental values with an rms deviation of 3.8 MHz for the fundamental band and 2.5 MHz for the hot band.  相似文献   

16.
17.
An infrared laser sideband spectrometer operating in the CO2 laser region with 8- to 18-GHz sidebands has been used to record 266 transitions in the ν3 band and 84 transitions in the 2ν3ν3 band of 12CH3F. The accuracy of the measured frequencies is estimated to be 1–3 MHz. A millimeter/submillimeter-wave spectrometer has been used to record the spectra of 48 pure rotational transitions in the ground vibrational state and 55 transitions in the v3 = 1 vibrational state with an accuracy of 20–90 kHz. The new measurements have been combined with previous radio frequency and infrared laser results to derive sets of constants for the ground, v3 = 1, and v3 = 2 states for this molecule. Tables of the vibrational dependence of the parameters and of the near coincidences of the ν3 and 2ν3ν3 band transitions with CO2 laser frequencies are given.  相似文献   

18.
We report results from measurements of the high resolution FTIR spectrum for the fully deuterated benzene molecule C6D6 in the range 450–3500 cm?1. Accurate spectroscopic constants have been obtained for the fundamental vibration ν11 at 496.208 cm?1 and improved ground state constants have been deduced from a fit of ground state combination differences. The J structure of the combination parallel bands ν2 + ν11 (at 2798.1 cm?1), ν5 + ν12 (1802.5 cm?1) and ν7, + ν16 (2619.3 cm?1) of C6D6 has been analysed as well, from which improved values of the band origin and of the B and D j constants of the excited states have been obtained. The strongest hot bands accompanying these parallel transitions have been assigned by means of the anharmonic force field calculated by Maslen et al. [1992, J. chem. Phys., 97, 4233]. In particular (ν11 + ν16) ? ν16 is assigned to the band at 492.4 cm?1 even though its shape is typical of a perpendicular transition (PAPE). New values for the ν5, ν12 and ν16 band origins are determined from the band origins of combination bands and from calculated anharmonic constants. Numerous anharmonic constants are derived from the assignment of hot band and combination transitions.  相似文献   

19.
The vibration-rotation spectra of the ν1 and ν8 fundamental bands of 32SF4 have been observed using Fourier-transform infrared spectroscopy. The band centre of the c-type ν1 symmetric sulphur-equatorial-fluorine stretching vibration was observed at 891.6 cm?1 and that for the b-type ν8 asymmetric sulphur-equatorial-fluorine stretching vibration at 864.6 cm?1. In total, 2044 rovibrational transitions have been assigned. Analysis of the spectra showed that the rotational states of the ν1 = 1 and ν8 = 1 upper vibrational levels are coupled by an a-type Coriolis interaction. This coupling has been treated both using perturbation theory and by the explicit inclusion of an appropriate Hamiltonian matrix element in a combined fit of the data for both bands. Spectroscopic parameters have been determined for the ground, ν1 = 1 and ν8 = 1 vibrational levels. Weaker transitions resulting from difference bands and the fundamental bands of the 34SF4 isotopomer have been identified but could not be assigned, because of the density of lines in the room-temperature spectrum. The possibility that discrepancies between the observed and predicted spectra of the ν1 fundamental may result from either a Coriolis interaction with the states of another vibrational level, or the effects of intramolecular exchange of axial and equatorial fluorine atoms is considered. The discussion is supported by theoretical calculations which show that the likely path for intramolecular exchange is via a C 4v transition state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号