首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
A new method least square-support vector machine (LS-SVM) was used to develop quantitative structure–property relationship (QSPR) models for predicting the logarithmic of n-octanol/water partition coefficient (log P) of some derivatives phenolic compounds. The calibration and predictive ability of LS-SVM were investigated and compared with those of three other methods; multiple linear regression (MLR), support vector linear regression (SVR) and artificial neural network (ANN). The results showed that the log P values calculated by LS-SVM were in good agreement with experimental values, and the performances of the LS-SVM models were comparable or superior to those of MLR, SVR and ANN methods. The root-mean-square errors of the training set and the predicting set for the LS-SVM model were 0.0855, 0.0746 and the squares of the correlation coefficients were 0.9960 and 0.9728, respectively. These values and other statistical parameters obtained for the LS-SVM model show the reliability of this model. LS-SVM is a new and effective method for predicting log P of some organic compounds, and can be used as a powerful chemometrics tool for QSPR studies.  相似文献   

2.
3.
4.
5.
6.
The two conceptual systems of organic homologous compounds and homo‐rank compounds give insight into the influence of structures on the properties of mono‐substituted alkanes Xi–(CH2)j–H from the transverse (change of repeating unit number j of CH2) and longitudinal (change of functional group Xi) perspectives, respectively. This paper aims to combine the organic homo‐rank compounds approach together with the homologous compounds approach to explore the property change rules of mono‐substituted alkanes involving various substituents. Firstly, based on the concept of organic homologous compounds, the properties of mono‐substituted straight‐chain alkane homologues were linearly correlated to the two‐thirds power of the number of carbon atoms (N2/3) in alkyl, and regression equations such as Q = A + BN2/3 were obtained. The regression coefficients A and B vary with different substituents Xi, so coefficients A and B were employed to characterize the structural information of substituent Xi. The structural features of alkyls (–(CH2)j–H, that is, –CjH2j+1) were described by the polarizability effect index (PEI(R)) and vertex degree–distance index (VDI). Then based on four parameters A, B, PEI(R), and VDI, quantitative structure–property relationship models were built for the boiling points (Bp) and refractive indexes (nD) of each mono‐substituted alkane homo‐rank series, where j = 3–10 and the substituents Xi involve F, Cl, Br, I, NO2, CN, NH2, COOH, CHO, OH, SH, and NC. Good results indicate that the combination of an organic homo‐rank compounds method and a homologous compounds method has exhibited obvious advantages over traditional methods in the quantitative structure–property relationship study of mono‐substituted alkanes concerning various substituents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
l-Threonine diformate (LTDF), a novel organic nonlinear optical crystal has been synthesized and grown by slow evaporation technique. The grown crystals were subjected to single crystal and powder X-ray diffraction studies. Functional groups present in the material were identified by FT IR spectral analysis. Absorption spectrum shows that the crystal is found to be transparent in the visible region. Thermal analysis was performed to study the thermal stability of the crystal. The SHG efficiency of the grown crystal was confirmed by Kurtz–Perry powder technique.  相似文献   

8.
The Al-Cu-TM (TM = transition metal) alloy system has attracted great attention for both excellent glass-forming ability and its interesting physical properties. In this work, an investigation into the crystal, electrical and elastic properties of the AlCu2TM (TM = Ti, Zr, and Hf) compounds has been conducted by first-principles calculations based on density-functional theory. The fully relaxed structure parameters of the AlCu2TM compounds are in good agreement with previous experimental and other theoretical results. Besides, the cohesive energies of all the AlCu2TM compounds have been evaluated. The energy band and densities of state of these compounds are also obtained. According to the calculated single crystal elastic constants, all the compounds are mechanically stable. The polycrystalline bulk moduli, shear moduli, Young’s moduli and Poisson’s ratio have been deduced by using Voigt-Reuss-Hill (VRH) approximations. The calculated negative Cauchy pressure and ratio of bulk modulus to shear modulus indicated that the AlCu2TM compounds are ductile materials. The Debye temperatures of the AlCu2TM compounds decrease with increasing the TM (Ti, Zr, and Hf) atomic number.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号