首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the experimental and theoretical UV, NMR and vibrational spectra of 2-chloro-6-methylaniline (2-Cl-6-MA, C7H8NCl) were studied. The ultraviolet absorption spectra of compound that dissolved in ethanol were examined in the range of 200–400 nm. The 1H, 13C and DEPT NMR spectra of the compound were recorded. FT-IR and FT-Raman spectra of 2-Cl-6-MA in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies were found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts were calculated using the gauge-invariant atomic orbital (GIAO) method. Comparison of the calculated NMR chemical shifts and absorption wavelengths with the experimental values revealed that DFT method produces good results.  相似文献   

2.
In this work, the experimental and theoretical vibrational spectra of N1‐methyl‐2‐chloroaniline (C7H8NCl) were studied. FT‐IR and FT‐Raman spectra of the title molecule in the liquid phase were recorded in the region 4000–400 cm?1 and 3500–50 cm?1, respectively. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (B3LYP) with the 6‐311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT‐IR and FT‐Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. 13C and 1H NMR chemical shifts results were compared with the experimental values. The optimized geometric parameters (bond lengths and bond angles) were given and are in agreement with the corresponding experimental values of aniline and p‐methyl aniline. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The prepared Acetaldehyde thiosemicarbazone (ATSC) have been investigated by both the experimental and theoretical methods; through this work, the essentiality of elucidation of molecular fragments source linear and non-linear optical properties was explored. The stability of the structure and entire calculations have been performed on HF and B3LYP methods with 6-311++G(d,p) level of basis set. The Mulliken charge profile, electronic, optical and hyper polarizability analyses have been carried out in order to evaluate nonlinear optical (NLO) performance of the present compound. The exact optical location of the ATSC was determined by executing UV–Visible calculations on TDSCF method. The existence of the molecular group for the inducement and tuning of NLO properties were thoroughly investigated by performing fundamental vibrational investigation. The optical energy transformation among frontier molecular levels has been described in UV–Visible region. The Gibbs energy coefficient of thermodynamic functions was monitored in different temperature and it was found constant irrespective of temperatures. The appearance of different chemical environment of H and C was monitored from the 1H and 13C NMR spectra. The vibrational optical polarization characteristics with respect to molecular composition in the compound have been studied by VCD spectrum. The bond critical point, Laplacian of electron density, electron kinetic energy density and total electron energy density have calculated and analysed using AIM study.  相似文献   

4.
The Fourier transform Raman and Fourier transform infrared spectra for minoxidil have been recorded in the region 4000—100 cm?1 and 4000—450 cm?1, respectively. The structural and spectroscopy data of the molecule in the ground state were calculated by using density functional theory methods with 6-311G (d, p) basis set. A detailed vibrational analysis of the title compound has been done using normal coordinate analysis following the scaled quantum mechanical force field methodology. The calculated molecular geometry parameters and scaled vibrational wavenumbers are well compared with the experimental data. The electronic properties, such as excitation energies, absorption wavelength, highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) energies were performed by time-dependent density functional theory approach, and the results are in good agreement with experimental absorption spectrum. The charge delocalizations of these molecules have been analyzed using natural bond orbital analysis. The molecule orbital contributions are studied by density of energy states. Fukui functions, local softness, and electrophilicity indices for selected atomic sites of the title compound are determined. Finally, the thermal behaviors of the compound have been calculated by different temperature.  相似文献   

5.
The analyses of possible conformations, molecular structures, vibrational and electronic properties of 2-(methylthio)nicotinic acid molecule, C7H7NO2S, with the synonym 2-(methylsulfanyl)nicotinic acid have been first presented theoretically. At the same time, FT-IR and micro-Raman spectra of 2-(methylthio)nicotinic acid were recorded in the regions 400–4000 cm?1 and 100–4000 cm?1, respectively. In our calculations, the DFTB3LYP method with 6–311G(d, p) basis set was used to have the structural and spectroscopic data about the mentioned molecule in the ground state and the results obtained were compared with experimental values. Furthermore, gauge invariant atomic orbital (GIAO) 1H and 13C NMR chemical shifts in different solvents, UV-vis TD-DFT calculations, the highest occupied molecular orbitals (HOMO-2, HOMO-1, HOMO), lowest unoccupied molecular orbital (LUMO), molecular electrostatic potantial (MEP) surface, atomic charges and thermodynamic properties of molecule have been theoretically verified and simulated at the mentioned level. The energetic behavior of title molecule in different solvent media was investigated by using DFT/B3LYP method with 6–311G(d, p) basis set in terms of integral equation formalism polarizable continuum model (IEFPCM). In addition, the calculated infrared intensities, Raman activities, reduce masses and force constants of the compound under study have been also reported.  相似文献   

6.
Synthesis, crystallographic characterisation, spectroscopic (Fourier transform infrared spectroscopy [FT-IR]) and density functional modelling studies of the Schiff base 1-[(4-ethoxyphenylimino)methyl]napthalene-2-ol (C19H17NO2) have been reported. The molecular structure obtained from X-ray single-crystal analysis of the investigated compound in the ground state has been compared using Hartree–Fock and density functional theory (DFT) with the 6-311++G(d,p) basis set. In addition to the optimised geometrical structures, atomic charges, molecular electrostatic potential, natural bond orbital, non-linear optical (NLO) effects and thermodynamic properties of the compound have been investigated by using DFT. The experimental (FT-IR) and calculated vibrational frequencies (using DFT) of the title compound have been compared. The solvent effect was also investigated for obtained molecular energies and the atomic charge distributions of the compound. There exists a good correlation between experimental and theoretical data for enol-imine form of the compound. The total molecular dipole moment (µ), linear polarisability (α), and the first-order hyperpolarisability (β) were predicted by the B3LYP method with different basis sets 6-31G(d), 6-31+G(d,p), 6-31++G(d,p), 6-311+G(d) 150 and 6-311++G(d,p) for investigating the effects of basis sets on the NLO properties. Our computational results yield that βtot for the title compound is greater than those of urea.  相似文献   

7.
In the present work, the experimental and the theoretical spectroscopic properties of 1-Methyl-6-Nitro-1H- Benzimidazole were investigated. The FT-IR (400~4 000 cm-1) and FT-Raman spectra (100~4 000 cm-1) of 1-Methyl-6-Nitro-1H- Benzimidazole in the solid phase were recorded. Also, experimental NMR and UV spectra of titled molecule were measured. To interpret the experimental data, geometric parameters, vibrational frequencies, NMR, UV spectra and NLO analysis of the optimized molecule were calculated using ab initio Hartree–Fock (HF) method and density functional theory (B3LYP) method with the 6-31++G(d,p) and 6-311++G(d,p) basis sets. Vibrational bands were assigned based on the potential energy distribution using the VEDA 4 program. The theoretical results showed good agreement with the experimental values.  相似文献   

8.
The Schiff base (Z)-1-[(2,4-dimethoxyphenylamino)methylene]naphthalen-2(1H)-one was synthesized from the reaction of 2-hydroxy-1-naphthaldehyde with 2,4-dimethoxyaniline. The title compound has been characterized by FT-IR, UV-Vis and, X-ray single-crystal techniques. The present X-ray investigation shows that the compound exists in the keto-amine tautomeric form. Molecular geometry and vibrational frequencies of the compound in the ground state have been calculated using the density functional theory (DFT) with 6–311G(d, p) basis set and compared with the experimental data. The calculated results show that the optimized geometry is compatible with the crystal structure and the theoretical vibrational frequencies are in good agreement with the experimental values. Besides, molecular electrostatic potential (MEP), frontier molecular orbital analysis (HOMO-LUMO) and non-linear optical (NLO) properties of the compound were investigated using the same theoretical calculations.  相似文献   

9.
魏洪源  熊晓玲  刘国平  罗顺忠 《物理学报》2011,60(6):63401-063401
应用群论及原子分子反应静力学方法推导了TiO分子基态(X3Δr)的离解极限.采用不同的计算方法,包括密度泛函B3LYP,B3P86,BP86,B3PW91和MP2,MP4方法,结合不同基组计算了TiO分子基态的平衡核间距、能量和振动频率.研究表明,使用B3LYP方法,对O原子使用6-311+G基组,Ti原子使用6-311+ +G**基组时计算得到的平衡几何结构、分子离解能和谐振频率与实验值符合得最好.使用优选出的方法和基组对T 关键词: TiO 势能函数 光谱常数 密度泛函理论  相似文献   

10.
The FT Raman and FTIR spectra of flucytosine were recorded in the region 3500–100 cm−1 and 4000–400 cm−1, respectively. The optimized geometry, wavenumber and intensity of the vibrational bands of flucytosine were obtained by ab initio and density functional theory (DFT) levels with complete relaxation in the potential energy surface using the 6‐31G(d,p) and 6‐311G(d,p) basis sets. A complete vibrational assignment aided by the theoretical harmonic frequency analysis is proposed. The harmonic vibrational wavenumbers calculated are compared with experimental FTIR and FT Raman spectra. The observed and the calculated wavenumbers are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar‐type spectrograms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
This paper reports that vibrational spectroscopic analysis on hydrogen-bonding between acetone and water comprises both experimental Raman spectra and ab initio calculations on structures of various acetone/water complexes with changing water concentrations. The optimised geometries and wavenumbers of the neat acetone molecule and its complexes are calculated by using ab initio method at the MP2 level with 6-311+G(d,p) basis set. Changes in wavenumber position and linewidth (fullwidth at half maximum) have been explained for neat as well as binary mixtures with different mole fractions of the reference system, acetone, in terms of intermolecular hydrogen bonding. The combination of experimental Raman data with ab initio calculation leads to a better knowledge of the concentration dependent changes in the spectral features in terms of hydrogen bonding.  相似文献   

12.
In this study, the experimental and theoretical results on the molecular structures of some flavonoid derivatives (Baicalein and Naringenin) are presented. The FT‐IR and FT‐Raman spectra of the compounds have been recorded together for the first time between 4000–400 cm−1 and 3500–5 cm−1 regions, respectively. The molecular geometry and vibrational wavenumbers of the compounds have been also calculated in their ground states by using ab initio HF and DFT/B3LYP functional with 6‐31G(d,p) basis set used in calculations. The calculations were utilized to the C1 symmetries of the molecules. All calculations were performed with Gaussian 98 software. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. Scale factors have been used in order to compare how the calculated and experimental data are in agreement. Theoretical infrared intensities were also reported. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.

Spectroscopic (FT-IR, FT-Raman, UV–vis, and NMR) techniques have been extensively used for structural elucidation of compounds along with the study of geometrical and vibrational properties. Herein, 2-acetyl-5-methylfuran, a derivative of furan, was experimentally characterized and analyzed in details using FT-IR, FT-Raman, UV–vis, and 1H NMR spectroscopic techniques conducted in different solvents. The experimentally analyzed spectral results were carefully compared with theoretical values obtained using density functional theory (DFT) calculations at the B3LYP/6–311?+?+?G (d, p) method to support, validate, and provide more insights on the structural characterizations of the titled compound. The correlated experimental and theoretical structural vibrational assignments along with their potential energy distributions (PEDs) and all the spectroscopic spectral investigations of the titled structure were observed to be in good agreements with calculated results.

  相似文献   

14.
Vibrational spectral analysis was carried out for 4‐methoxy‐2‐methyl benzoic acid (4M2MBA) by using Fourier transform infrared (FT‐IR) (solid, gas phase) and FT‐Raman spectroscopy in the range of 400–4000 and 10–3500 cm−1 respectively. The effects of molecular association through O H···O hydrogen bonding have been described by the single dimer structure. The theoretical computational density functional theory (DFT) and Hatree‐Fock (HF) method were performed at 6–311++G(d,p) levels to derive the equilibrium geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities. The scaled theoretical wavenumbers were also shown to be in good agreement with experimental data. The first‐order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of 4M2MBA are calculated using the B3LYP/cc‐pvdz basis set, based on the finite‐field approach. A detailed interpretation of the infrared and Raman spectra of 4M2MBA is reported. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule were also constructed and compared with the experimental one. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Quantum chemical calculations of energies, geometries and vibrational wavenumbers of 2,4‐difluorophenol (2,4‐DFP) were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6‐311G(d,p) as basis set. The optimized geometrical parameters obtained by HF and DFT calculations are in good agreement with related molecules. The best level of theory in order to reproduce the experimental wavenumbers is the B3LYP method with the 6‐311G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of 2,4‐DFP is also reported. The entropy of the title compound was also performed at HF/6‐311G(d,p) and B3LYP/6‐311G(d,p) levels of theory. The isotropic chemical shift computed by 1H, 13C NMR analyses also shows good agreement with experimental observations. The theoretical spectrograms for FT‐IR and FT‐Raman spectra of the title molecule have been constructed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
We present the first vibrational structure investigation of 3,3,7,7‐tetrakis(difluoramino)octahydro‐1,5‐dinitro‐ 1,5‐diazocine (HNFX)—and, more generally, of a member of the new class of gem‐bis(difluoramino)‐substituted heterocyclic nitramine energetic materials—using combined theoretical and experimental approaches. Optimized molecular structure and vibrational spectra of the Ci… symmetry conformer constituting the HNFX crystal were computed using density functional theory methods. Fourier transform infrared and Raman spectra of HNFX crystalline samples were also collected at ambient temperature and pressure. The average deviation of calculated structural parameters from X‐ray diffraction data is ∼1% at the B3LYP/6‐311 + + G(d,p) level of theory, suggesting the absence of significant molecular distortion induced by the crystal field. Very good agreement was found between simulated and measured spectra, allowing reliable assignment of the fundamental normal modes of vibration of the HNFX crystal. Detailed analysis of the normal modes of the C–(NF2)2 and N–NO2 moieties was performed due to their critical importance in the initial steps of the molecular homolytic fragmentation process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The FTIR and FT-Raman spectra of tetrahydroxy-1,4quinone hydrate have been recorded in the regions 4000–400 and 3500–50 cm–1 respectively. Using the observed Fourier-transform infrared spectroscopy (FTIR) and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound has been carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, were calculated by the density functional theory (DFT/B3LYP) and Hartree–Fock (HF) method with 6-311+G(d,p) basis set. The difference between the observed and scaled wavenumber values of most of the fundamental vibrations is very small. A detailed interpretation of the infrared and Raman spectra of tetrahydroxy-1,4quinone hydrate is also reported. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule.  相似文献   

18.
The pure rotational spectrum of β-propiolactone (c-C2H4COO) has been recorded between 7 and 21 GHz using a pulsed jet Fourier transform microwave spectrometer. The resulting ground state spectroscopic constants guided the analysis of the rotationally-resolved infrared spectra of two bands that were collected using the far infrared beamline at the Canadian Light Source synchrotron. The observed modes correspond to motions best described as ring deformation (ν12) at 747.2 cm−1 and CO ring stretching (ν8) at 1095.4 cm−1. A global fit of 4430 a- and b-type transitions from the microwave spectrum and the two infrared bands provided an accurate set of ground state and excited state spectroscopic parameters. To complement the experimental results, the harmonic and anharmonic vibrational frequencies of all 21 infrared active modes of β-propiolactone have been calculated using the DFT B3LYP method (6-311+G(d,p), 6-311++G(2d,3p) basis sets).  相似文献   

19.
We have synthesized 4‐[N‐phenyl‐N‐(3‐methylphenyl)‐amino]‐benzoic acid (4‐[PBA]) and investigated its molecular vibrations by infrared and Raman spectroscopies as well as by calculations based on the density functional theory (DFT) approach. The Fourier transform (FT) Raman, dispersive Raman and FT‐IR spectra of 4‐[PBA] were recorded in the solid phase. We analyzed the optimized geometric structure and energies of 4‐[PBA] in the ground state. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital analysis. The results show that change in electron density in the σ* and π* antibonding orbitals and E2 energies confirm the occurrence of intramolecular charge transfer within the molecule. Theoretical calculations were performed at the DFT level using the Gaussian 09 program. Selected experimental bands were assigned and characterized on the basis of the scaled theoretical wavenumbers by their total energy distribution. The good agreement between the experimental and theoretical spectra allowed positive assignment of the observed vibrational absorption bands. Finally, the calculation results were applied to simulate the Raman and IR spectra of the title compound, which show agreement with the observed spectra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Molecular geometry, experimental vibrational wavenumbers, electronic properties, and quantum chemical calculations of minaprine (C17H22N4O · 2HCl), (with synonym, dihydrochloride salt of N-(4-methyl-6-phenyl-3-pyridazinyl)-4-morpholineethamine) which is widely used as a psychotropic drug at medicinal treatment, in the ground state by using density functional theory (DFT/B3LYP) method with 6–31++G(d,p) basis set have been presented for the first time. The comparison of the observed fundamental vibrational frequencies were in a very good agreement with the experimental data. Furthermore, UV-vis TD-DFT calculations, the highest occupied molecular orbitals (HOMO-1, HOMO), lowest unoccupied molecular orbitals (LUMO, LUMO + 1), molecular electrostatic potential (MEP) surface, atomic charges and thermodynamic properties of minaprine molecule have been theoretically calculated and simulated at the mentioned level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号