首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption of NO and O2 on Rh(111) has been studied by TPD and XPS. Both gases adsorb molecularly at 120 K. At low coverages (θNO < 0.3) NO dissociates completely upon heating to form N2 and O2 which have peak desorption temperatures at 710 and 1310 K., respectively. At higher NO coverages NO desorbs at 455 K and a new N2 state obeying first order kinetics appears at 470 K. At saturation, 55% of the adsorbed NO decomposes. Preadsorbed oxygen inhibits NO decomposition and produces new N2 and NO desorption states, both at 400 K. The saturation coverage of NO on Rh(111) is approximately 0.67 of the surface atom density. Oxygen on Rh(111) has two strongly bound states with peak temperatures of 840 and 1125 K with a saturation coverage ratio of 1:2. Desorption parameters for the 1125 peak vary strongly with coverage and, assuming second-order kinetics, yield an activation energy of 85 ± 5 kcalmol and a pre-exponential factor of 2.0 cm2 s?1 in the limit of zero coverage. A molecular state desorbing at 150 K and the 840 K state fill concurrently. The saturation coverage of atomic oxygen on Rh(111) is approximately 0.83 times the surface atom density. The behavior of NO on Rh and Pt low index planes is compared.  相似文献   

2.
The reaction of NO with CO on Rh(111) has been studied with temperature programmed reaction (TPR). Comparisons are made with the reaction of O2 with CO and the reaction of NO with H2. The rate-determining step for both CO oxidation reactions is CO(a) + O(a) → CO2(g). Repulsive interactions between adsorbed CO and adsorbed nitrogen atoms lead to desorption of CO in a peak at 415 K which is in the temperature range where the reaction between CO(a) and O(a) produces CO2(g). Thus the extent of reaction of CO(a) with NO(a) is less than that between CO(a) and O(a) due to the lower coverage of CO caused by adsorbed N atoms and NO. A similar repulsive interaction between NO(a) and H(a) suppresses the NO + H2 reaction. CO + NO reaction behavior on Rh(111) is compared to that observed on Pt(111).  相似文献   

3.
Y. Zhu  L.D. Schmidt 《Surface science》1983,129(1):107-122
Temperature programmed desorption (TPD) of CO is used to determine surface areas, binding states, and changes upon oxidation for 10–1000 Å particles of Pt, Rh, and Pt-Rh alloy on amorphous SiO2. A low area sample configuration is used to obtain rapid and uniform heating and cooling in an ultra-high vacuum system. It is shown that both metals exhibit a higher CO binding state for small particles, but, as particle size increases, this state disappears and is replaced by a more weakly bound state. These states are suggested to be associated with (111) and higher surface free energy planes on these surfaces, heating Rh above 700 K in O2 at 10?6 Torr produces an oxide on which the CO saturation coverage is at least a factor of 10 lower than on the reduced surface. For Pt, oxidation produces only a small decrease in CO coverage, although the binding energy of CO increases on the oxygen treated surface. The difference in desorption temperatures for CO on Pt and Rh is consistent with previous experiments which show that an oxidation-reduction cycle produces a surface layer which is enriched in Rh and that the oxidized alloy contains no Pt atoms.  相似文献   

4.
The catalytic reduction of NO in the presence of benzene on the surface of Pt(3 3 2) has been studied using Fourier transform infra red reflection-absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). IR spectra show that while the presence of benzene molecules at low coverage (e.g., following an exposure of just 0.25 L) promotes NO-Pt interaction, the adsorption of NO on Pt(3 3 2) at higher benzene coverages is suppressed. It is also shown that there are no strong interactions between the adsorbed NO molecules and the benzene itself or benzene-derived hydrocarbons, which can lead to the formation of intermediate species that are essential for N2 production.TDS results show that the adsorbed benzene molecules undergo dehydrogenation accompanied by hydrogen desorption starting at 300 K and achieving a maximum at 394 K. Subsequent dehydrogenation of the benzene-derived hydrocarbons then begins with hydrogen desorption starting at 500 K. N2 desorption from NO adlayers on clean Pt(3 3 2) surface becomes significant at temperatures higher than 400 K, giving rise to a peak at 465 K. This peak corresponds to N2 desorption from NO dissociation on step sites. The presence of benzene promotes N2 desorption, depending on the benzene coverage. When the benzene exposure is 0.25 L, the N2 desorption peak at 459 K is dramatically increased. Increasing benzene coverage also results in the intensification of N2 desorption at ∼410 K. At benzene exposures of 2.4 L, N2 desorption develops as a broad peak with a maximum at ∼439 K.It is concluded that the catalytic reduction of NO by platinum in the presence of benzene proceeds by NO decomposition and subsequent oxygen removal at temperatures lower than 500 K, and NO dissociation is a rate-limiting step. The contribution of benzene to N2 desorption is mainly attributed to providing a source of H, which quickly reacts with NO-derived atomic O, leaving the surface with more vacant sites for further NO dissociation.  相似文献   

5.
Adsorption and decomposition of NO on Pt (1 1 2) have been studied by temperature programmed desorption (TPD), ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). NO adsorbs molecularly on Pt (1 1 2) at 95 K. About half amount of NO molecules adsorbs at the terrace sites and remaining half amount adsorbs at the step sites at a full monolayer coverage. Then about half of NO molecules adsorbed at step sites decomposes at around 483 K desorbing N2, promptly.  相似文献   

6.
Nitric oxide desorption and reaction kinetics are compared on the (111), (110),and (100) planes of platinum using temperature programmed desorption mass spectrometry. NO exhibits large crystallographic anisotropies with the (100) plane having stronger bonding and much higher decomposition activity than the (110) or (111) planes. The desorption activation energies for the major tightly bound states are 36, 33.5, and 25 kcal mole?1 on the (100), (110), and (111) planes respectively. Pre-exponential factors for these states on the (110) and (111) planes are 1 × 1016±0.5s?1. The major tightly bound state on the (100) plane dissociates to yield 50% N2 and O2, but all other states all planes desorb without significant decomposition. The fraction decomposed is less than 2% on the Pt(111) surface.  相似文献   

7.
We investigated the effects of combination of noble metals M (Rh, Pd, Ir, Pt) and metal oxide supports S (Al2O3, SiO2, ZrO2, CeO2) on the NO + H2 reaction using planar catalysts with M/S two layered thin films on Si substrate. In this study, NO reduction ability per metal atom were evaluated with a specially designed apparatus employing pulse valves for the injection of reactant molecules onto catalysts and a time-of-flight mass spectrometer to measure multiple transient products: NH3, N2 and N2O simultaneously as well as with an atomic force microscopy to observe the surface area of metal particles. The catalytic performances of Rh and Ir catalysts were hardly affected by a choice of a metal oxide support, while Pd and Pt catalysts showed different catalytic activity and selectivity depending on the metal oxide supports. This assortment is consistent with ability to dissociate NO depending on metals without the effect of any support materials. There, the metals to the left of Rh and Ir on the periodic table favor dissociation of NO and those to the right of Pd and Pt tend to show molecular adsorption of NO. Therefore, the catalytic property of noble metals could be assorted into two groups, i.e. Rh and Ir group whose own property would mainly dominate the catalytic performance, and Pd and Pt group whose interaction with metal oxides supports would clearly contribute to the reaction of NO with H2. NO reduction activity of Pd and Pt was found to be promoted above that of Rh and Ir, provided that Pd and Pt were supported by CeO2 and ZrO2.  相似文献   

8.
The geometric and electronic structures of NO adsorbed on three metals (Ni, Rh, and Pt) from 130 to 600 K were investigated by using near edge X-ray absorption fine structure (NEXAFS) and resonant photoemission spectroscopy (RPS). NEXAFS revealed that NO was molecularly adsorbed on all three metals at 130 K with its molecular axis normal to the surface. The elongation of the NO intramolecular bond on metal was in the order Ni>Rh>Pt, and was related to the electron-back donation from metal-d band to 2π of NO. This order was the same for the electron donation from 5σ of NO to metal-d band estimated by using RPS. With heating, NO was desorbed from Pt without dissociation, whereas NO on Ni and Rh dissociated. Both NEXAFS and RPS showed that the electronic interaction between NO and Pt was increased by heating, but desorption preceded dissociation. The above results were finally related to the catalytic properties of the three metals for the reaction of NO.  相似文献   

9.
We utilized temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS), and low energy electron diffraction (LEED) to investigate the oxidation of Pt(1 0 0)-hex-R0.7° at 450 K. Using an oxygen atom beam, we generated atomic oxygen coverages as high as 3.6 ML (monolayers) on Pt(1 0 0) in ultrahigh vacuum (UHV), almost 6 times the maximum coverage obtainable by dissociatively adsorbing O2. The results show that oxidation occurs through the development of several chemisorbed phases prior to oxide growth above about 1 ML. A weakly bound oxygen state that populates as the coverage increases from approximately 0.50 ML to 1 ML appears to serve as a necessary precursor to Pt oxide growth. We find that increasing the coverage above about 1 ML causes Pt oxide particle growth and significant surface disordering. Decomposition of the Pt oxide particles produces explosive O2 desorption characterized by a shift of the primary TPD feature to higher temperatures and a dramatic increase in the maximum desorption rate with increasing coverage. Based on thermodynamic considerations, we show that the thermal stability of the surface Pt oxide on Pt single crystal surfaces significantly exceeds that of bulk PtO2. Furthermore, we attribute the high stability and the acceleratory decomposition rates of the surface oxide to large kinetic barriers that must be overcome during oxide formation and decomposition. Lastly, we present evidence that structurally similar oxides develop on both Pt(1 1 1) and Pt(1 0 0), therefore concluding that the properties of the surface Pt oxide are largely insensitive to the initial structure of the Pt single crystal surface.  相似文献   

10.
The adsorption and desorption chemistry of NO on the clean Rh{111} and Rh{331} single crystal surfaces was followed with SIMS, XPS, and LEED. Results suggest dissociative NO adsorption occurs at step and/or defect sites. At saturation coverage there was ~ 10 times more dissociated species on the Rh{331} surface at 300 K than on the Rh{111} surface. On both surfaces two molecular states of NOads have been identified as β1, and β2 which possess different chemical reactivity. Under the condition of saturation coverage the β1 and β2 states are populated on the Rh{111} surface in a different proportion than on the Rh{331} surface. Further, their population on both surfaces is coverage and temperature dependent. When the sample is heated to desorb the saturation overlayer formed on the Rh{111} and Rh{331} crystal surfaces, approximately 50% of the overlayer is found to desorb below ? 400 K primarily from the β2 state, molecularly as NO(g). Between 300 and 400 K the β1 state dissociates as binding sites necessary to coordinate Nads and Oads are freed by desorption of NO(g).  相似文献   

11.
First-principles calculations based on density functional theory (DFT) have been performed to study the adsorption and decomposition of NH3 on Ni(110). The adsorption sites, the adsorption energies, the transition states and the activation energies of the stepwise dehydrogenation of NH3 and the associative desorption of N are determined, and the zero point energy correction is included, which makes it possible to compute the rate constants of the elementary steps in NH3 decomposition. Combined DFT calculations and kinetic analysis at 350 K indicate that the associative desorption of N has a reaction rate lower than NHx dehydrogenation and is therefore the rate determining step. The distinctly different rate constants over Ni(110), Ni(111) and Ni(211) imply that ammonia decomposition over Ni-based catalyst is a structure-sensitive reaction.  相似文献   

12.
Temperature programmed desorption (TPD) of coadsorbed NO and CO on Pt(111) shows that no reaction occurs (less than 2%) up to the desorption temperature of NO. At 100 K, adsorption is competitive, but neither gas displaces the other from the surface. Coadsorbed CO causes the NO desorption temperature to be lowered by as much as 100 K, but NO does not affect the CO desorption temperature. TPD spectra for NO depend on which gas is adsorbed first, indicating that equilibrium between species is not established on the surface during desorption. Electron energy loss spectra show that the vibrational spectrum of each gas is only weakly affected by the other. When NO is adsorbed first, CO does not affect the ratio of bridged and terminal NO but lowers the frequencies of the bridged NO by approximately 50 cm?1 and lowers the intensities of vibrational peaks of both species by a factor of about four. When CO is adsorbed first, the ratio of terminal to bridged NO increases for given coverage of NO, and the frequency of the bridged NO remains at the pure NO value. These results are explained in terms of CO island formation, repulsive interactions between NO and CO, and low adsorbate mobilities.  相似文献   

13.
The thermal and electro impact behaviour of NO adsorbed on Pt(111) and Pt(110) have been studied by LEED, Auger spectroscopy, and thermal desorption. NO was found to adsorb non-dissociatively and with very similar low coverage adsorption enthalpies on the two surfaces at 300 K. In both cases, heating the adlayer resulted in partial dissociation and led to the appearance of N2 and O2 in the desorption spectra. The (111) surface was found to be significantly more active in inducing the thermal dissociation of NO, and on this surface the molecule was also rapidly desorbed and dissociated under electron impact. Cross sections for these processes were obtained, together with the desorption cross section for atomically bound N formed by dissociation of adsorbed NO. Electron impact effects were found to be much less important on the (110) surface. The results are considered in relation to those already obtained by Ertl et al. for NO adsorption on Ni(111) and Pd(111), and in particular, the unusual desorption kinetics of N2 production are considered explicitly. Where appropriate, comparisons are made with the behaviour of CO on Pt(111) and Pt(110), and the adsorption kinetics of NO on the (110) surface have been examined.  相似文献   

14.
The chemisorption of NO on clean and Na-dosed Ag(110) has been studied by LEED, Auger spectroscopy, and thermal desorption. On the clean surface, non-dissociative adsorption into the α-state occurs at 300 K with an initial sticking probability of ~0.1, and the surface is saturated at a coverage of about 125. Desorption occurs without decomposition, and is characterised by an enthalpy of Ed ~104 kJ mol?1 — comparable with that for NO desorption from transition metals. Surface defects do not seem to play a significant role in the chemistry of NO on clean Ag, and the presence of surface Na inhibits the adsorption of αNO. However, in the presence of both surface and subsurface Na, both the strength and the extent of NO adsorption are markedly increased and a new state (β1NO) with Ed ~121 kJ mol?1 appears. Adsorption into this state occurs with destruction of the Ag(110)-(1 × 2)Na ordered phase. Desorption of β1NO occurs with significant decomposition, N2 and N2O are observed as geseous products, and the system's behaviour towards NO resembles that of a transition metal. Incorporation of subsurface oxygen in addition to subsurface Na increases the desorption enthalpy (β2NO), maximum coverage, and surface reactivity of NO still further: only about half the adsorbed layer desorbs without decomposition. The bonding of NO to Ag is discussed, and comparisons are made with the properties of α and βNO on Pt(110).  相似文献   

15.
We present comprehensive Monte Carlo simulations of isothermal kinetic oscillations and chaos in catalytic reactions accompanied by adsorbate-induced surface restructuring. Our analysis is based on the lattice-gas model describing surface restructuring in terms of the statistical theory of first-order phase transitions. As an example, we treat the kinetics of the NO-H2 reaction on the Pt(100) surface. A proposed reduced mechanism of this reaction includes NO adsorption, desorption, and decomposition occurring on the restructured patches of the surface (the decomposition products are rapidly removed from the surface via N2 desorption and H2O formation and desorption). Calculations are performed with a qualitatively realistic ratio between the rates of different elementary steps. In particular, NO diffusion is several orders of magnitude faster compared to the other steps. On the nm scale, the model predicts formation of restructured islands with atomically sharp boundaries. The shape of the islands is found to change dramatically with varying reaction conditions. Despite phase separation on the surface, the transition from almost harmonic oscillations (with relatively small separate islands) to chaos (with merging islands) is demonstrated to occur via the standard Feigenbaum scenario. Near the critical point, the dependence of the amplitude of oscillations on the governing parameter is shown to be close to that predicted for the Hopf supercritical bifurcation.  相似文献   

16.
Temperature programmed desorption (TPD) and temperature programmed adsorption (TPA) have been used to characterize adsorbate coverages during and after NO decomposition on polycrystalline Pt foils at pressures between 10?4 and 30 Torr. The densities and stoichiometries of tightly bound species were determined after reaction by TPD of NO, N2, and O2 following cooling and pumpdown to <10?8 Torr. For characterization during reaction at pressures up to 10?3 Torr the ribbon was flashed inside a 35 cm3 reaction cell, and desorption and adsorption spectra of all species were recorded. Using digital acquisition of pressures versus time, peaks as small as 10?3 of the background pressure could be analyzed. By flashing to different fixed temperatures, adsorption isobars during reaction were determined. These measurements show that there is a tightly bound stoichiometric layer of N and O (perhaps undissociated) and that the reactive state is weakly bound and appears to be strongly inhibited by molecular oxygen. This model also agrees with reaction rate measurements at these pressures.  相似文献   

17.
The behaviour of adsorbed nitrogen and the overall catalytic reaction between NO and H2 on Rh foil were investigated in a pressure region around 10?5–10?4 Pa and a temperature range between 400 and 1200 K, using the flash desorption technique and ultraviolet photoelectron spectroscopy. In a reducing condition, the NOH2 reaction proceeded rapidly in the temperature range between 500 and 1000 K, and the reaction probability of NO was almost unity in the temperature region studied. The major product was N2, but NH3 was also formed around 500 K. Chemisorbed nitrogen was accumulated during the NO-H2 reaction and also during the NH3 decomposition reaction. In both cases, the dependence of the rate of N2 formation upon the amount of N(ad) estimated during the reaction was similar to that in the case of N(ad) flash desorption, which indicates that N2 is formed by recombination of N(ad) in both the NO-H2 reaction and the NH3 decomposition reaction. The rate constant for the second order desorption of N(ad) was estimated to be 10?6.8 ± 0.3 exp(?97 ± 5(kJmol) RT) (cm2atom·s). The overall reaction of NO-H2 on Rh proceeds in a similar manner to Pd previously reported, but the dissociation of NO takes place more easily over Rh and O(ad) is more stable, being liable to cause an inhibition of the NO-H2 reaction, especially at lower temperature.  相似文献   

18.
The coadsorption of PH3 with H2, D2, O2 and H2O on Rh(100) has been studied using temperature programmed desorption (TPD), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The adsorption and molecular desorption of PH3 is not affected by preadsorbed H2, D2 and O2. Preadsorbed PH3 blocks H2 desorption sites while postdosed PH3 displaces H2 (D21) from the Rh(100). When D2 and PH3 are coadsorbed, no D appears in desorbed phosphine. Preadsorbed O2 reduces the amount of H2 desorption (from PH3 decomposition) and increases the H2 desorption temperature. There is also some reaction between O(a) and H(a) to form water. Preexposure to H2O decreases the extent of PH3 adsorption and of PH3 decomposition.  相似文献   

19.
The surface chemistry of NO and NO2 on clean and oxygen-precovered Pt(1 1 0)-(1 × 2) surfaces were investigated by means of high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). At room temperature, NO molecularly adsorbs on Pt(1 1 0), forming linear NO(a) and bridged NO(a). Coverage-dependent repulsive interactions within NO(a) drive the reversible transformation between linear and bridged NO(a). Some NO(a) decomposes upon heating, producing both N2 and N2O. For NO adsorption on the oxygen-precovered surface, repulsive interactions exist between precovered oxygen adatoms and NO(a), resulting in more NO(a) desorbing from the surface in the form of linear NO(a). Bridged NO(a) experiences stronger repulsive interactions with precovered oxygen than linear NO(a). The desorption activation energy of bridged NO(a) from oxygen-precovered Pt(1 1 0) is lower than that from clean Pt(1 1 0), but the desorption activation energy of linear NO(a) is not affected by the precovered oxygen. NO2 decomposes on Pt(1 1 0)-(1 × 2) surface at room temperature. The resulted NO(a) (both linear NO(a) and bridged NO(a)) and O(a) repulsively interact each other. Comparing with NO/Pt(1 1 0), more NO(a) desorbs from NO2/Pt(1 1 0) as linear NO(a), and both linear NO(a) and bridged NO(a) exhibit lower desorption activation energies. The reaction pathways of NO(a) on Pt(1 1 0), desorption or decomposition, are affected by their repulsive interactions with coexisting oxygen adatoms.  相似文献   

20.
We report on the adsorption and decomposition of NO on O-covered planar Ir(2 1 0) and nanofaceted Ir(2 1 0) with variable facet sizes investigated using temperature programmed desorption (TPD), high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT). When pre-covered with up to 0.5 ML O, both planar and faceted Ir(2 1 0) exhibit unexpectedly high reactivity for NO decomposition. Upon increasing the oxygen coverage to 0.7 ML O, planar Ir(2 1 0) has little activity while faceted Ir(2 1 0) still remains active toward NO decomposition, although NO decomposition is completely inhibited when both surfaces are pre-covered by 1 ML O. NO molecularly adsorbs on O-covered Ir at 300 K. At low NO and oxygen coverage, NO adsorbs on the atop sites of planar Ir(2 1 0) while on the bridge and atop sites of faceted Ir(2 1 0) composed of (1 1 0) and {3 1 1} faces. No evidence for size effects in the decomposition of NO on O-covered faceted Ir(2 1 0) is observed for average facet size in the range 5-14 nm. Our findings should be of importance for development of Ir-based catalysts for NO decomposition under oxygen-rich conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号