首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.  相似文献   

2.
Unlike conventional oil production methods, enhanced oil recovery (EOR) processes can recover most oil products from the reservoir. One method, known as wettability alteration, changes the hydrophilicity of the reservoir rock via decreased surface interactions with crude oils. The mitigation of these attractive forces enhances petroleum extraction and increases the accessibility of previously inaccessible rock deposits. In this work, silica nanoparticles (NPs) have been used to alter the wettability of two sandstone surfaces, Berea and Boise. Changes in wettability were assessed by measuring the contact angle and interfacial tension of different systems. The silica NPs were suspended in brine and a combined solution of brine and the Tween®20 nonionic surfactant at concentrations of 0, 0.001, and 0.01 wt% NP with both light and heavy crude oil. The stability of the different nanofluids was characterized by the size, zeta potential, and sedimentation of the particles in suspension. Unlike the NPs, the surfactant had a greater effect on the interfacial tension by influencing the liquid-liquid interactions. The introduction of the surfactant decreased the interfacial tension by 57 and 43% for light and heavy crude oil samples, respectively. Imaging and measurements of the contact angle were used to assess the surface-liquid interactions and to characterize the wettability of the different systems. The images reflect that the contact angle increased with the addition of NPs for both sandstone and oil types. The contact angle in the light crude oil sample was most affected by the addition of 0.001 wt% NP, which altered both sandstones’ wettability. Increases in contact angle approached 101.6% between 0 and 0.001 wt% NPs with light oil on the Berea sandstone. The contact angle however remained relatively unaffected by addition of higher NP concentrations, thus indicating that low NP concentrations can effectively be used for enhancing crude oil recovery. While the contact angle of the light crude oil plateaued, the heavy crude oil continued to increase with an increase in NP concentration; therefore indicating that a maximum contact angle in heavy crude oil was not yet achieved. The introduction of NPs in light and heavy crude oil samples altered both the Berea and Boise sandstone systems’ wettability, which in turn indicated the efficacy of the silica NPs and surfactants in generating a more water-wet reservoir. Consequently, silica NPs and surfactants are most promising for EOR across the range of oil types.  相似文献   

3.
When immiscible liquids are subjected to an ultrasonic field, they form emulsions. This principle has been used to improve the mass transfer characteristics of a liquid-liquid extraction process in microreactor systems. The formation of emulsion and its characteristics are prominently dependent on the properties of the liquids used and this also holds true for emulsion brought about by ultrasound. This paper focuses on the properties of fluids that are reported to have an influence on the cavitation behaviour, namely viscosity, interfacial tension and vapour pressure. These properties were examined by changing the solvent of the organic phase in the hydrolysis of p-nitrophenyl acetate. The study is performed by comparing pairs of solvents that are different in one property but similar in the other two. The pairs selected are toluene – chlorobenzene for viscosity, toluene – methyl Isobutyl ketone for interfacial tension and methyl isobutyl ketone – 2-Methyl tetrahydrofuran for vapour pressure effects. A qualitative study was performed with a high-speed camera in flow to understand the emulsification initiation mechanisms and behaviours. These findings were further explored by performing the sonicated emulsion in a batch-sonicated reactor. The quantitative analysis of the fluid properties was evaluated and compared based on the relative percentage increase in yield upon sonication with respect to their individual silent conditions. The quantitative results were further supported by the quantification of the emulsion performed with an FBRM probe. The results indicate a two times improvement in yield with solvent of lower viscosity as 2 times more droplets were formed in the emulsion. Both the solvent systems with higher interfacial tension and vapour pressure had an improved yield of 1.4 times owing to larger number of droplets formed.  相似文献   

4.
This study was designed to compare the properties of myofibrillar protein (MP) stabilized soybean oil-in-water emulsions fabricated by ultrasound-assisted emulsification (UAE), high-pressure homogenization (HPH) and high-speed homogenization (HSH). The emulsion properties, droplet characteristics, interfacial proteins, protein exposure extent, microrheological properties, multiple light scattering results, and 7 d storage stabilities of the three emulsions were specifically investigated. Our results indicate that UAE and HPH were better emulsification methods than HSH to obtain high-quality emulsions with higher emulsifying activity index (UAE 20.73 m2·g−1, HPH 11.76 m2·g−1 and HSH 6.80 m2·g−1), whiteness (UAE 81.05, HPH 80.67 and HSH 74.09), viscosity coefficient (UAE 0.44 Pa·sn, HPH 0.49 Pa·sn and HSH 0.22 Pa·sn), macroscopic viscosity index (UAE 2.31 nm−2·s, HPH 0.38 nm−2·s and HSH 0.34 nm−2·s), and storage stability, especially for the UAE. Furthermore, UAE was a more efficient emulsification method than HPH to prepare the fine MP-soybean oil emulsion. The protein-coated oil droplets were observed in the three emulsions. The emulsion droplet size of the UAE-fabricated emulsion was the lowest (0.15 μm) while the interfacial protein concentration (93.37%) and the protein exposure extent were the highest among the three emulsions. During the 7 d storage, no separation was observed for the UAE-fabricated emulsion, while the emulsions fabricated by HPH and HSH were separated after storage for 5 d and 2 h. Therefore, this work suggests that UAE could be a better method than HPH and HSH to fabricate MP-soybean oil emulsion.  相似文献   

5.
原油乳状液对原油的长距离输运具有重要影响,乳状液的油、水状态及相互作用机制还需新理论和新方法获得新认识,基于有效介质理论,本文研究了原油乳状液太赫兹光谱响应特征.通过太赫兹时域光谱系统测试得到了含水率为0~28%的原油乳状液的太赫兹时域光谱,结合傅里叶变换计算了吸收系数和介电常数等光学参数,同一频率下吸收系数等光学参数...  相似文献   

6.
Although emulsion pumping is a subject of growing interest, a detailed analysis of the fluid dynamic phenomena occurring inside these machines is still lacking. Several computational investigations have been conducted to study centrifugal pumps carrying emulsion by analyzing their overall performance, but no studies involved the rheological behavior of such fluids. The purpose of this study is to perform a computational analysis of the performance and flow characteristics of a centrifugal pump with volute handling emulsions and oil–water mixtures at different water cuts modeled as a shear-thinning non-Newtonian fluid. The studied pump consists of a five-bladed backward curved impeller and a volute and has a specific speed of 32 (metric units). The rheological properties of the mixtures studied were measured experimentally under a shear rate ranging from 1 s−1 to 3000 s−1 and were fitted to conventional Cross and Carreau effective viscosity models. Numerical results showed the flow topology in the pump is directly related to the viscosity plateau of the pseudoplastic behavior of emulsions. The viscosity plateau governs pump performance by influencing the loss mechanisms that occur within the pump. The larger the ν, the less recirculation loss the fluid experiences, and conversely, the smaller the value of ν0, the less friction loss the fluid experiences.  相似文献   

7.
We study the rheological properties of a granular suspension subject to constant shear stress by constant volume molecular dynamics simulations. We derive the system "flow diagram" in the volume fraction or stress plane (phi, F): at low phi the flow is disordered, with the viscosity obeying a Bagnold-like scaling only at small F and diverging as the jamming point is approached; if the shear stress is strong enough, at higher phi an ordered flow regime is found, the order-disorder transition being marked by a sharp drop of the viscosity. A broad jamming region is also observed where, in analogy with the glassy region of thermal systems, slow dynamics followed by kinetic arrest occurs when the ordering transition is prevented.  相似文献   

8.
徐文婷  李洁  刘一杨  陈强  易勇  刘梅芳 《强激光与粒子束》2022,34(5):052002-1-052002-8
激光惯性约束聚变(ICF)作为探索受控核聚变的有效途径,有望获得清洁无污染的能源,而薄壁聚苯乙烯(PS)空心微球是ICF物理实验中亟需的一类微球。针对薄壁空心微球因径厚比(直径/壁厚)增大导致其在干燥、使用中易开裂的问题,研究了PS原料对薄壁微球质量的影响,探讨了其影响机制。结果表明:当油相PS质量分数为4%时,随着油相粘度增加,W1/O/W2复合乳粒稳定性逐渐提高;当油相质量分数不低于8%时,复合乳粒稳定性良好。PS原料对微球表面粗糙度影响较小,微球球形度和壁厚均匀性随初始油相粘度的增大而降低,在干燥过程中微球开裂率随原料力学性能提高而减小。在外水相中引入氟苯(FB)液滴,延缓固化速率,可减小油相粘度增加对微球球形度和壁厚均匀性的不利影响。  相似文献   

9.
We present local velocity measurements in emulsions under shear using heterodyne Dynamic Light Scattering. Two emulsions are studied: a dilute system of volume fraction φ = 20% and a concentrated system with φ = 75%. Velocity profiles in both systems clearly show the presence of wall slip. We investigate the evolution of slip velocities as a function of shear stress and discuss the validity of the corrections for wall slip classically used in rheology. Focussing on the bulk flow, we show that the dilute system is Newtonian and that the concentrated emulsion is shear-thinning. In the latter case, the curvature of the velocity profiles is compatible with a shear-thinning exponent of 0.4 consistent with global rheological data. However, even if individual profiles can be accounted for by a power law fluid (with or without a yield stress), we could not find a fixed set of parameters that would fit the whole range of applied shear rates. Our data, thus, raise the question of the definition of a global flow curve for such a concentrated system. These results show that local measurements are a crucial complement to standard rheological tools. They are discussed in the light of recent works on soft glassy materials. Received 1 November 2002 and Received in final form 8 January 2003 / Published online: 1 April 2003 RID="a" ID="a"e-mail: salmon@crpp.u-bordeaux.fr  相似文献   

10.
柴油、乙醇和水三组元乳化液流变特性的研究   总被引:3,自引:0,他引:3  
研究了柴油、乙醇和水三组元乳化液的流变特性。实验发现乳化液在本文的组分配比下近似为牛顿流体,而且乳化剂的种类、含量以及乳化液的组分等均对乳化液的流变特性具有显著的影响。对于组分相同的乳化液,乳化液的粘度随着乳化剂含量和粘度的增加而增加;当乳化剂的含量和粘度相同时,若乙醇和水之间的相对质量分数保持不变,减少乳化液中柴油的含量(柴油不少于50%),乳化液的粘度随之增加。但是,柴油、乙醇和水三组元乳化液的粘度要比柴油、甲醇和水三组元乳化液的粘度大2到3倍。  相似文献   

11.
O/W emulsions stabilized by polyphenol/amylose (AM) complexes with several polyphenol/AM mass ratios and different polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) were prepared by a high-intensity ultrasound emulsification technique. The effect of the pyrogallol group number of polyphenols and the mass ratio of polyphenols/AM on polyphenol/AM complexes and emulsions was studied. The soluble and/or insoluble complexes gradually formed upon adding polyphenols into the AM system. However, insoluble complexes were not formed in the GA/AM systems because GA has only one pyrogallol group. In addition, the hydrophobicity of AM could also be improved by forming polyphenol/AM complexes. The emulsion size decreased with increasing pyrogallol group number on the polyphenol molecules at a fixed ratio, and the size could also be controlled by the polyphenol/AM ratio. Moreover, all emulsions presented various degrees of creaming, which was restrained by decreasing emulsion size or the formation of a thick complex network. The complex network was enhanced by increasing the ratio or pyrogallol group number on the polyphenol molecules, which was because the increasing number of complexes was adsorbed onto the interface. Altogether, compared to GA/AM and EGCG/AM, the TA/AM complex emulsifier had the best hydrophobicity and emulsifying properties, and the TA/AM emulsion had the best emulsion stability.  相似文献   

12.
To prepare nano-composite emulsion acrylic resins with improved surface hardness and solvent resistance, nano-silica particles were treated with surfactants. The monomers of methyl methacrylate/butylacrylate were co-polymerized on the surface of dispersed silica particles. Several emulsions with different silica contents and copolymer mole fractions were prepared. Finally the emulsions were modified to water-based acrylic coatings and improved properties such as surface hardness, solvent resistance and glossiness were determined. The study of coatings was directed to find the improved resin by optimum surface properties. Size distribution and morphology of latexes were characterized by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy and scanning electron microscopy. The glass transition temperature of nano-composites was measured and discussed its relation with silica contents, monomer mole fractions and improved properties of coatings. The optimum pendulum hardness of coatings was on 0.46 methyl methacrylate mole fraction and 120 g silica content. An increase in pendulum hardness of nano-composites with the addition of modified silica was observed. DLS and TEM studies indicate that silica particles were dispersed homogenously through the polymer matrix.  相似文献   

13.
The rheology and morphology of multi-walled carbon nanotube (MWNT)/polypropylene (PP) nanocomposites prepared via melt blending was investigated. The minor phase content of MWNT varied between 0.25 and 8 wt%. From morphological studies using a scanning electron microscopy technique a good dispersion of carbon nanotubes in the PP matrix was observed. The rheological studies were performed by a capillary rheometer, and mechanical properties of the nanocomposites were studied using a tensile and flexural tester. Both PP and its nanocomposites showed non-Newtonian behavior. At low shear rates the addition of MWNT content causes an increase in viscosity; however, viscosity is less sensitive to addition of MWNT content at higher shear rates. Flow activation energy for the nanocomposites was calculated using an Arrhenius type equation. From this calculation it was concluded that the temperature sensitivity of nanocomposites was increased by increasing of nanotube content. An increase in tensile and flexural moduli and Izod impact strength was also observed by increasing the MWNT content. From rheological and mechanical tests it was concluded that the mechanical and rheological percolation threshold is at 1.5 wt%.  相似文献   

14.
Consumers’ preference for products with reduced levels of fat increased in the last years. Proteins and polysaccharides have an important role due to their functional and interaction properties because, when combined in ratios and pH of higher potential for electrostatic interactions they may act as emulsifiers or stabilizers. This study evaluated the ultrasound impact on the electrostatic interaction between pectin (PEC) and whey protein concentrate (WPC) at different WPC:PEC ratios (1:1 to 5:1), and its effect on the emulsification and stability of emulsions formulated with WPC:PEC blends (1:1, 4:1) at low soybean oil contents (5 to 15%). Zeta potential analysis showed greater interactions between biopolymers at pH 3.5, which was proven in FTIR spectra. Rheology and turbidimetry showed that the ultrasound reduced the suspension viscosity and the size of the biopolymer complexes. Suspensions were Newtonian, whereas the emulsions showed shear-thinning behavior with slight increase in apparent viscosity as a function of oil content, and remained stable for seven days, with small droplets (<8 μm) stabilized and entrapped in a pectin network evidenced by confocal laser microscopy. Sonication was successfully applied to emulsion stabilization, improving the functional properties of WPC:PEC blends and enabling their application as low-fat systems, providing healthier products to consumers.  相似文献   

15.
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.  相似文献   

16.
In this study, comparative assessment of the technical performance, energy usage and economic impact of ultrasound, electrostatics and microwave on the coalescence of binary water droplets in crude oil was conducted. The effect of different oil properties such as crude oil viscosity (10.6–106 mPa s) and interfacial tension (IFT) (20–250 mN/m) on the coalescence time and energy consumption was examined. In addition, operation conditions such as inlet emulsion flow velocity (10–100 mm/s), electric field type, ultrasound frequency and applied voltage amplitude (0–30 kV) were evaluated. The numerical models showed good agreement with experimental findings in the literature. Moreover, the process time of the dewatering process increased with rising inlet flow velocities. The elevation of the coalescence time with velocity can be attributed to the increasing effect of flow disturbance, and the reduction of the emulsion residence time. As regards the IFT, the coalescence time reduced as the IFT was increased. This can be associated with the improved stability of emulsions formed at lowered IFT. As the maximum droplet size is directly proportional to the IFT, lowering the IFT reduces the peak diameter of the droplets that are present in the emulsion. Moreover, the coalescence time followed the order: ultrasound < microwave < electrostatics approaches under varying IFT. The coalescence energy increased from ∼15 J, ∼90 J and ∼25 mJ to ∼61 J, ∼235 J and ∼26 mJ for microwave, electrostatics and ultrasound techniques, respectively, as the viscosity was raised from 10.6 to 106 mPa s. Ultrasound coalescence showed significant energy and economic savings in comparison to microwave and electro-coalescence. Hence, ultrasound coalescence would be a potential method for standalone or integrated demulsification over the two other techniques. However, there are indications that beyond a viscosity of 300 mPa s, the effect of ultrasound becomes weak with significant hindrance to droplet movement and accumulation. This analysis provides fundamental insights on the comparative behavior of the three emulsion separation techniques.  相似文献   

17.
This study aimed to evaluate the potential of time-dependent (0, 15, 30, 60, 120 min) treatment of porcine-derived myofibrillar proteins (MPs) with high-intensity ultrasound (HIU) for utilizing them as a Pickering stabilizer and decipher the underlying mechanism by which HIU treatment increases the emulsification and dispersion stability of MPs. To accomplish this, we analyzed the structural, physicochemical, and rheological properties of the HIU-treated MPs. Myosin heavy chain and actin were observed to be denatured, and the particle size of MPs decreased from 3,342.7 nm for the control group to 153.9 nm for 120 min HIU-treated MPs. Fourier-transformed infrared spectroscopy and circular dichroism spectroscopy confirmed that as the HIU treatment time increased, α-helical content increased, and β-sheet decreased, indicating that the protein secondary/tertiary structure was modified. In addition, the turbidity, apparent viscosity, and viscoelastic properties of the HIU-treated MP solution were decreased compared to the control, while the surface hydrophobicity was significantly increased. Analyses of the emulsification properties of the Pickering emulsions prepared using time-dependent HIU-treated MPs revealed that the emulsion activity index and emulsion stability index of HIU-treated MP were improved. Confocal laser scanning microscopy images indicated that small spherical droplets adsorbed with MPs were formed by HIU treatment and that dispersion stabilities were improved because the Turbiscan stability index of the HIU-treated group was lower than that of the control group. These findings could be used as supporting data for the utilizing porcine-derived MPs, which have been treated with HIU for appropriate time periods, as Pickering stabilizers.  相似文献   

18.
This study explored the potential application of xanthan gum as a polymer-flooding agent for oil recovery applications in a specific Devonian oil field. Rheological measurements using oscillatory and steady shear were carried out to examine the change in shear viscosity when the polymer was applied under reservoir conditions. The xanthan rheological properties were described by the Herschel–Bulkley and Ostwald models to characterize its non-Newtonian behavior. As expected, the results showed that higher xanthan concentrations raised the polymer viscosity and increased the degree of shear thinning. Addition of alkalis caused the viscosity of the xanthan solutions to decrease, but they maintained their shear-thinning properties. Polymer solutions in typical oil field brine increased in viscosity by ca. 400% for 720 hours storage time. On the other hand, as expected, the solutions lost their viscosity gradually with increasing temperature. However, at reservoir temperature (68°C), the polymer solutions kept more than 60% of their initial viscosity. In oscillatory deformation tests it was observed that all the measured viscoelastic properties were influenced by temperature and confirmed that xanthan solution behaved as a weak-gel. An order-disorder transition exists within the xanthan-brine solutions which responds to changes in solution concentration, temperature and alkalis.  相似文献   

19.
Nanocomposites of two different grades of polyamide 6 (PA6) with organically modified nanoclay were prepared via melt compounding in a twin‐screw extruder. The rheological behavior, morphology and mechanical properties of the nanocomposites were studied using a capillary rheometer, x‐ray diffraction (XRD), tapping‐mode atomic force microscopy (AFM), and tensile and flexural tests. XRD patterns indicate that the organically modified layered silicate was well dispersed in the PA6 matrix. From the AFM images the surface roughness of PA6 slightly increases with addition of organoclay. The rheological studies showed that the prepared nanocomposites have shear thinning behavior, obeying the power law equation. Addition of organoclay increases the shear stress and shear viscosity. At high rate of shear deformation the viscosity of nanocomposites are comparable to those of the pure polyamides. The activation energy of flow decreases with increasing nanoclay content. For most of the prepared nanocomposites the activation energy values increase with increasing shear rate. The tensile strength and flexural modulus and strength of the nanocomposites increase with increase of nanoclay content, but the extension at yield decreases with increasing clay loading.  相似文献   

20.
Concentrated suspensions of sulfonated polyacrylamide (SPA)/Na+-montmorillonite (Na-MMT) were prepared and their stability and steady shear rheological properties were described as a function of nanoparticle and polymer concentration and temperature. The results showed that the Na-MMT nanoparticles suspensions were stable in the absence and presence of SPA and no sedimentation was seen. The Z-average particle sizes for the SPA/Na-MMT suspensions increased in the presence of SPA. Rheological investigations showed that the SPA solutions and SPA/Na-MMT suspensions displayed non-Newtonian behavior in almost the whole range of shear rate. All the suspensions exhibited a shear-thinning flow character as shear rate increased. The flow curves indicated the shear viscosity and stress of the samples were decreased with increasing nanoparticles concentration up to 1.5 wt%, but for Na-MMT loading greater than 1.5 wt% there was an increase in shear viscosity and stress of the suspensions. Increasing of SPA concentration had more effect on increasing the rheological properties of SPA/Na-MMT suspensions than increasing of nanoclay content. Shear viscosity and stress of the suspensions increased with increasing SPA concentration and decreased with increasing temperature from 50°C to 70°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号