首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate wetting transitions in a binary fluid at a solid surface by means of a density functional approach. For this purpose we use the symmetric binary mixture model, which exhibits a demixing in a bulk phase. We concentrate on the evaluation of the phase diagrams in the case of adsorption from a gas phase at a fixed composition. Our calculations have revealed different scenarios, leading to the change of wettability of the surface. In the case of adsorption from an equimolar bulk gas the wetting transition may be of the first or of the second order. In the case of non-equimolar bulk composition we observe either a transition from partial to complete wetting, or a first-order transition between two partial wetting states.  相似文献   

2.
Using a mean-field density functional approach we investigate phase separation transition in a binary mixture of Gaussian-core molecules confined in narrow slit-like pores. We consider pores with repulsive and attractive walls. In the case of fluid confinement in pores with repulsive and non-selective attracting walls, no phase separation in the confined fluid, prior to the bulk separation transition, was observed. However, in the case of pores with the walls selectively attracting fluid particles, we reveal that the separation transition may take place as a two-step process. During the first step the composition change occurs within a few layers adjacent to the pore walls, whereas in the second step, it takes place in the pore interior.  相似文献   

3.
The phase behaviour of binary mixtures of hard rod-like particles has been studied using Parsons—Lee theory (Parsons, J. D., 1979, Phys. Rev. A, 19, 1225); Lee, S. D., 1987, J. Chem. Phys., 87, 4972). The stability of the isotropic-nematic (I-N) transition with respect to isotropic—isotropic (I-I), and nematic—nematic (N-N) demixing is investigated. The individual components in the mixtures are modelled as hard cylinders of diameters Di and lengths Li (i = 1,2). The aspect ratios ki = Li/Di of the components are kept fixed (with values of k 1 = 15 and k 2 = 150), and the phase behaviour of the mixtures is studied for varying diameter ratios d = D 1/D 2. When the diameter ratio is relatively large, e.g., for values of d = 50, component 1 may be considered a large colloidal particle, while the second component plays the role of a weakly interacting solvent. This mixture exhibits only an I-N phase transition which is driven by the excluded volume interaction between the large particles (no I-I or N-N demixing is seen). A decrease in the diameter ratio enhances the contribution of the smaller component to the free energy (especially in terms of the unlike excluded volume term), and I-I as well as N-N demixing transitions are observed. The character of the N-N transition is rather unusual, a single region bounded by a lower critical point (in the pressure—composition plane) is seen for a diameter ratio of d = 3.2, while two demixed nematic regions bounded by lower and upper critical points are observed for d = 3.13. A further decrease in the diameter ratio (e.g., to d = 3) leads to systems with a phase behaviour in which the two demixed N-N regions meet, giving rise to a large demixed region with very strong fractionation in composition, and no N-N critical points. The I-I demixing transition is always accompanied by a lower critical point and occurs for systems with intermediate size (diameter) ratios. A diameter ratio of d = 4.5 corresponds to systems with significant like and unlike excluded volume interactions, and in this case the I-N transition takes place over the whole composition range with weak fractionation and one azeotropic point. Surprisingly, the coexisting nematic phase is of lower packing fraction than the isotropic phase for some of the compositions, i.e., an inversion of packing fraction takes place. In addition to this, the longer rods can be less ordered that the shorter rods for certain values of the composition.  相似文献   

4.
The recently introduced approach (Bosetti, H., and Perera, A., 2001, Phys. Rev. E, 63, 021206) for studying entropy driven demixing in binary mixtures of hard convex bodies is applied here to analyse the influence of molecular geometrical factors such as shape and size ratio on isotropic fluid-fluid phase separation. The theory is shown to be self-consistent, in the sense that it allows the calculation of both the binodal and the spinodal of the demixing, and both curves merge at the same lower consolute point. In the case of 3-dimensional fluids, demixing is usually allowed for sufficiently thick solutes, provided no orientational ordering destabilizes the mixture. Fluid—fluid demixing is explicitly forbidden in cases of equal breadth of the solute and the solvent molecules, regardless of the aspect ratio of both particles. In particular, mixtures of prolate and oblate particles will demix more easily. The influence of shape is more importantly seen at moderate elongations. Finally, within the present approximation, demixing is forbidden for binary mixtures of 2-dimensional fluids, irrespective of the shape of the bidimensional molecules.  相似文献   

5.
This paper reports on a Grand Canonical Monte Carlo study of the freezing and melting of Lennard–Jones Ar/Kr mixtures confined in a slit pore composed of two strongly attractive structureless walls. For all molar compositions and temperatures, the pore, which has a width of 1.44?nm, accommodates two contact layers and one inner layer. Different wall/fluid interactions are considered, corresponding to pore walls that have a larger affinity for either Ar or Kr. The solid/liquid phase diagram of the confined mixture is determined and results compared with data for the bulk mixture. The structure of the confined mixture is studied using 2D order parameters and both positional g(r) and bond orientational G6(r) pair correlation functions. It is found that in the confined solid phase, both the contact and inner layers have a hexagonal crystal structure. It is shown that the freezing temperature of the Ar/Kr confined mixture is higher than the bulk freezing point for all molar compositions. Also, it is found that the freezing temperature becomes larger as the ratio α of the wall/fluid to the fluid/fluid interactions increases, in agreement with previous simulation studies on pure substances confined in nanopores. In the case of pore walls having a stronger affinity for Kr atoms (ε Ar/W<ε Kr/W), it is observed that both the contact and inner layers of the confined mixture undergo, at the same temperature, a transition from the liquid phase to the crystal phase. The freezing of Ar/Kr mixtures confined between the walls having a stronger affinity for Ar (ε Ar/W?>?ε Kr/W) is more complex: for Kr molar concentration lower than 0.35, we observe the presence of an intermediate state between all layers being 2D hexagonal crystals and all the layers being liquid. This intermediate state consists of a crystalline contact layer and a liquid-like inner layer. It is also shown that the qualitative variations of the increase of freezing temperature with the molar composition depend on the affinity of the pore wall for the different components. These results confirm that, in addition to the parameter α the ratio of the wall/fluid interactions for the two species, η=?Ar/W/?Kr/W, is a key variable in determining the freezing and melting behaviour of the confined mixture.  相似文献   

6.
The confinement of a lattice fluid in a set of slitlike pores separated by semipermeable walls with a finite width has been studied. The walls are modelled by a square-well repulsive potential with a finite height. The thermodynamic properties and the phase behaviour of the system are evaluated by means of Monte Carlo simulations. For some states theoretical calculations have been made using a mean-field-type theory. These investigations confirm previous findings for confined Lennard-Jones fluids, obtained from a density functional approach. For intermediate and low potential barriers that separate the pores, the isotherms exhibit two hysteresis loops and the liquid-vapour coexistence curve divides into two branches describing condensation inside the pore and inside the permeable wall. These two branches are separated by a triple point. At temperatures lower than the triple point temperature, the condensation takes place instantaneously in both the pore and inside the permeable wall. It was found that when the temperature is scaled by the bulk critical temperature, the phase diagram emerging from this simple mean-field treatment is close to the phase diagram obtained from simulation.  相似文献   

7.
The structure of a hard sphere fluid confined by model slit and cylindrical pores is investigated. Results from grand canonical Monte Carlo (GCMC) simulations and from the hypernetted chain/mean spherical approximation (HNC/MSA) equation are reported. GCMC results are compared with those from the HNC/MSA equation, and agreement is good. The effect of confinement on liquids at the same chemical potentials is that the absorption of the hard sphere fluid into the pores decreases with increasing confinement, i.e., when going from planar to cylindrical geometry or by narrowing the pores. The adsorption on the pore walls has, in general, the opposite behaviour. For high bulk concentrations and certain values of cylindrical pore diameter the concentration profile is higher at the centre of the pore than next to the pore wall. A very strong, but continuous, transition occurs in the concentration profile, as a function of the cylinder's diameter. These results could be of some interest in catalysis studies.  相似文献   

8.
ABSTRACT

We study the phase behaviour and morphology of systems involving mixtures of isotropic and anisotropic particles. The investigations are carried out using Molecular Dynamics technique. For this purpose we have proposed a model suitable for Molecular Dynamic simulations of such systems. The main part of calculations was carried out for two system compositions. At equimolar composition dense systems exhibit a specific structure. Both components form two interwoven lattices. Anisotropic particles are arranged in a honeycomb-like structure, while the bundles of fluid molecules are located inside these hexagons. If the number of isotropic molecules per one anisotropic particle is larger, then dense systems order into lamellar, solid-like structures.  相似文献   

9.
We construct a functional for amphiphile–polymer mixtures and investigate the demixing transition by using a proposed version of density functional theory. It is found that increase of the amphiphilic size ratio and polymer length can effectively promote phase separation of the systems. Phase diagrams are plotted to clarify these influences. The results provide an effective way of controlling the stability of the fluid–fluid phase equilibrium of the mixtures.  相似文献   

10.
The temperature-induced microphase separation of the binary liquid system iso-butyric acid+heavy water (iBA + D(2)O) in a mesoporous silica glass (CPG-10-75) of nominal pore width 7.5 nm was investigated by neutron spin-echo spectroscopy (NSE) and neutron small-angle scattering (SANS). Two mixtures of different composition were studied at different scattering angles at temperatures above and below the bulk phase transition temperature. The phase separation in the pore space is found to occur at a lower temperature than the bulk transition and extends over a significant temperature range. The effective diffusion coefficient derived from NSE at low scattering angles is found to decrease by one order of magnitude from 70 degrees C to 20 degrees C. This observation is attributed to the growing size of concentration fluctuations having a cut-off at ca. 8 nm, which corresponds to the mean pore size. The dynamics of the concentration fluctuations appears to be strongly influenced by the confinement in the pores, as it differs strongly from the bulk behaviour. These results are consistent with the preliminary results of the SANS study.  相似文献   

11.
A confinement of a Lennard-Jones fluid in a system of slitlike pores separated by semipermeable walls of a finite width is studied. The walls are modelled by square-well repulsive potential wells. The structure of the confined fluid is investigated by means of a density functional method. For high potential barriers separating the pores, the phase behaviour of the system is similar to that for a single slitlike pore with impenetrable walls. For intermediate and low potential barriers the system shows different phase behaviour. Within some temperature range the isotherms exhibit two hysteresis loops, which characterize the condensation of the fluid in different parts of the system, namely in the pore and inside the semipermeable walls. The systems characterized by low and intermediate potential barriers exhibit the triple point, such that at temperatures below that triple point the condensation instantaneously takes place in both the pore and inside the permeable wall.  相似文献   

12.
We investigate the adsorption of model symmetric binary mixtures, exhibiting closed loop immiscibility in the bulk phase, in slit-like pores by using a density functional approach. Our focus is on changes in the closed loop phase diagram owing to Confinement. We have found that, in general, confinement narrows immiscibility loops in the temperature-selectivity plane.  相似文献   

13.
We report a molecular simulation study of freezing transitions for simple fluids in narrow slit pores. A major stumbling block in previous studies of freezing in pores has been the lack of any method for calculating the free energy difference between the confined solid and liquid phases. Conventional thermodynamic integration methods often fail for confined systems, due to the difficulty in choosing a suitable path of integration. We use a different approach that involves calculating the Landau free energy as a function of a suitable order parameter, using the grand canonical Monte Carlo simulation method. The grand free energy for each phase can then be obtained by one-dimensional integration of the Landau free energy over the order parameter. These calculations are carried out for two types of wall—fluid interaction, a hard wall and a strongly attractive wall modelled on carbon. The grand free energy results for both cases clearly indicate a first order fluid to solid transition. In the case of the attractive carbon wall, there are three phases. Phase A corresponds to all layers having a liquid-like structure; phase B corresponds to the contact layers (the layers adjacent to the two pore walls) being frozen and the rest of the layers being fluid-like; phase C corresponds to all the layers being frozen. Our results for the angular structure function in the individual molecular layers show strong evidence of a transition from a two-dimensional liquid phase to a hexatic phase. This is followed by a transition from the hexatic to a crystal phase.  相似文献   

14.
sotherms for the mixed adsorbtion on two levels of a substance a on a isomorphe substrate b, proposed previously by one of the authors, are discussed for different values of the adsorption energy (ψab), sublimation energy of the adsorbate (ψaa) and sublimation energy of the substrate (ψbb) per bond. The variation of ψbb, both other energies remaining the same, can modify the level of the adsorption, and the order of the two-dimensional phase transition. In the special case ψab = 1/2ψbb the coverage θ is the same on both levels (inside and outside the top lattice plane of the substrate), until condensation takes place. The two dimensional condensation phenomena provoke always a demixing of the substances a and b between the two levels.  相似文献   

15.
An extension to the Gibbs ensemble method for the study of adsorption of fluids into pores is proposed. Since equality of pressure is not a necessary condition for full thermodynamic equilibrium between the bulk fluid and that confined in a narrow cavity, previous studies have been performed with the volume of both simulation cells fixed. More naturally, the pressure of the bulk fluid should be constrained and the volume (and hence density) allowed to attain its equilibrium value. Thus we propose a scheme in which volume fluctuations within the bulk box are permitted; the volume of the pore remains constant. The pressure is an input parameter and the amount of adsorption, as a function of applied pressure, is obtained directly. We demonstrate that the novel moves obey microscopic reversibility. Such a method is most useful when the equation of state for the model fluid is unknown. Thus, we illustrate the method by simulating an associating model of water adsorbed into a slit-shaped carbon pore with activated sites. Good qualitative correspondence with experiment is obtained; further refinement of our model is expected to yield quantitative agreement.  相似文献   

16.
A suspension of long rodlike colloids and long stiff polymers is modelled as a mixture of hard rods. The diameter of the colloid particle is finite, while the polymer is considered in the limit of zero diameter. Two types of first-order phase transition may occur in such mixtures: an isotropic-nematic phase transition if the density (or the pressure) is high enough, and a demixing transition involving two isotropic phases. The demixing transition has a critical point, and a triple point with one nematic and two isotropic phases may also exist. Phase diagrams are calculated. For the demixing isotropic-isotropic transition to be observed the ratio between the polymer length and the colloid length must exceed 0.36.  相似文献   

17.
The equation of state and the structure of hard spheres confined in spherical pores have been investigated via molecular dynamics for different pore radii ranging from 5.0 to 10.0?σ, where σ is the particle diameter. The hard boundary is chosen to capture the pure geometric effect of spherical confinement. A discontinuity in the equation of state was observed, indicating the onset of a freezing-like phase transition, which was similar to that of the bulk hard-sphere fluids. The behaviour of confined particles resembles that of the bulk with increase in the pore size, while its deviation from the bulk is found to be larger at the solid-like phase. For the pore radius below 5.0, FCC-like crystal clusters are not formed in spherically confined hard spheres.  相似文献   

18.
Cyclohexane was investigated both in bulk and in porous glasses with pore diameters between 4 and 208 nm in the temperature range 136 K≤T≤300 K. The methods involved were field-cycling NMR relaxometry, field-gradient NMR diffusometry, transverse-relaxation spectroscopy, and differential scanning calorimetry (DSC). The field-cycling data for the bulk material can best be described assuming translational modulation of intermolecular dipole-dipole coupling. This interpretation is confirmed by experiments with different degrees of deuteration, and is in accordance with diffusion coefficients determined with the aid of field-gradient diffusometry. The confinement in pores produces substantial changes in the phase behaviour and in molecular dynamics. For pore diameters of 30 nm and above, a non-frozen two monolayers thick film on the surface retains a diffusivity about one order of magnitude lower than in the bulk liquid, but two orders of magnitude larger than in the bulk plastic phase. Experiments indicate an exchange mechanism between this layer and the crystallite inside the pore. In glass with a pore diameter of 4 nm, all applied methods corroborate DSC results of the virtual absence of a phase transition and reveal a continuously decreasing translational mobility down to temperatures more than 100 K below the bulk liquid/cubic phase transition temperature.  相似文献   

19.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy is applied to diagnostics of phase behavior of a fluid in pores of nanoporous glasses. Samples with mean pore radii of 2 and 3.5 nm were filled with compressed carbon dioxide at near‐room temperatures. CARS spectra of the 1388 cm−1 Q‐branch were measured at isothermal compressing in a wide pressure range including the transition from gaseous to condensed state. The spectra show specific transformations caused by fluid adsorption and condensation in nanopores. We have carried out calculations of the spectral profiles based on the phase behavior of carbon dioxide in cylindrical glass nanopores. Phase behavior modeling was performed using thermodynamic concepts of surface adsorption and capillary condensation. A good agreement between experimental spectra and calculations was obtained. The potential of CARS technique for the diagnostics of fluid phase behavior in pores and for the characterization of nanoporous host structure is discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The phase separation of a mixture of water and isobutyric acid (iBA) confined in the pore space of Controlled Pore Glass (CPG) 10-75 has been studied by 1H NMR relaxometry and 1H-pulsed field gradient (PFG) diffusion measurements. For an acid-rich mixture (mass fraction 54 wt% iBA), evidence of a phase separation process in the pores was obtained, which occurs in a temperature window between 32 and 39 °C, as indicated in the PFG data by an anomalous temperature dependence of the diffusion coefficient and in the relaxation data by a bi-exponential magnetization decay. The phase separation temperature of the mixture in the pore is slightly lower than in the bulk mixture of the same composition (41 °C) and extends over a finite temperature range. A qualitative model of the phase separation process in the pores is developed, which assumes a temperature-dependent domain-like structure of the liquid below the phase transition temperature and a breakdown of these domains upon reaching the transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号