首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a representative database of 22 α,β- to β,γ-enecarbonyl isomerisation energies (to be known as the EIE22 data-set). Accurate reaction energies are obtained at the complete basis-set limit CCSD(T) level by means of the high-level W1-F12 thermochemical protocol. The isomerisation reactions involve a migration of one double bond that breaks the conjugated π-system. The considered enecarbonyls involve a range of common functional groups (e.g., Me, NH2, OMe, F, and CN). Apart from π-conjugation effects, the chemical environments are largely conserved on the two sides of the reactions and therefore the EIE22 data-set allows us to assess the performance of a variety of density functional theory (DFT) procedures for the calculation of π-conjugation stabilisation energies in enecarbonyls. We find that, with few exceptions (M05-2X, M06-2X, BMK, and BH&;HLYP), all the conventional DFT procedures attain root mean square deviations (RMSDs) between 5.0 and 11.7 kJ mol?1. The range-separated and double-hybrid DFT procedures, on the other hand, show good performance with RMSDs below the ‘chemical accuracy’ threshold. We also examine the performance of composite and standard ab initio procedures. Of these, SCS-MP2 offers the best performance-to-computational cost ratio with an RMSD of 0.8 kJ mol?1.  相似文献   

2.
《Molecular physics》2012,110(19-20):2477-2491
Accurate isomerization energies are obtained for a set of 45 C8H8 isomers by means of the high-level, ab initio W1-F12 thermochemical protocol. The 45 isomers involve a range of hydrocarbon functional groups, including (linear and cyclic) polyacetylene, polyyne, and cumulene moieties, as well as aromatic, anti-aromatic, and highly-strained rings. Performance of a variety of DFT functionals for the isomerization energies is evaluated. This proves to be a challenging test: only six of the 56 tested functionals attain root mean square deviations (RMSDs) below 3?kcal?mol?1 (the performance of MP2), namely: 2.9 (B972-D), 2.8 (PW6B95), 2.7 (B3PW91-D), 2.2 (PWPB95-D3), 2.1 (ωB97X-D), and 1.2 (DSD-PBEP86) kcal?mol?1. Isomers involving highly-strained fused rings or long cumulenic chains provide a ‘torture test’ for most functionals. Finally, we evaluate the performance of composite procedures (e.g. G4, G4(MP2), CBS-QB3, and CBS-APNO), as well as that of standard ab initio procedures (e.g. MP2, SCS-MP2, MP4, CCSD, and SCS-CCSD). Both connected triples and post-MP4 singles and doubles are important for accurate results. SCS-MP2 actually outperforms MP4(SDQ) for this problem, while SCS-MP3 yields similar performance as CCSD and slightly bests MP4. All the tested empirical composite procedures show excellent performance with RMSDs below 1?kcal?mol?1.  相似文献   

3.
The temperature dependent field ionization mass spectrometry method combined with ab initio calculations was used to determine the interaction energies and the structures of 9-methylguanine-acrylamide dimers. Acrylamide mimics the side chain amide group of the natural amino acids asparagine and glutamine. The experimental enthalpy of the dimer formation derived from the van't Hoff plot is ?59.5 ± 3.8 kJ mol?1. The value is higher than interaction energies between acrylamide and other nucleic acid bases which were determined to be ?57.0 for 1-methylcytosine, ?52.0 for 9-methyladenine, and ?40.6 kJ mol?1 for 1-methyl-uracil. In total, eight hydrogen bonded dimers formed by the three lowest energy 9-methylguanine tautomers and acrylamide were found in the quantum chemical calculations performed at the DFT/B3LYP/6-31++G?? and MP2/6-31++G?? levels of theory. The relative stability and the interaction energies of the dimers were calculated accounting for the basis set superposition error and the zero-point vibrational energy correction. The lowest energy dimer found in the calculations is formed by acrylamide (Ac) with the keto tautomer of 9-methylguanine (Gk). It is stabilized by two intermolecular H bonds, C6=O(Gk) · · · H—N(Ac) and Nl—H(Gk) · · ·O(Ac), and it is more stable than the second lowest energy dimer by ≈ 25 kJ mol?1. The calculated interaction energies of the lowest energy 9-methylguanine-acrylamide dimer are ?65.0 kJ mol?1 and ?67.7 kJ mol?1 at the MP2 and DFT levels of theory, respectively. The experimental enthalpy of the dimer formation is in good agreement with both the calculated interaction energies of the GkAc dimer and much higher than the interaction energies calculated for all other 9-methylguanine-acrylamide dimers. This proved that only one dimer was present in the experimental samples. To verify whether acrylamide is a good model of the amino acid-amide group, we performed direct calculations of the 9-methylguanine-glutamine dimers at the same levels of theory as used for the complexes involving acrylamide. The interaction energies found for the lowest energy 9-methylguanine-glutamine dimer are ?65.1 kJ mon?1 (MP2/6-31++G??) and ?66.2 kJ mol?1 (DFT/B3LYP/6-31++G??) and these values are very close (within 0.5 kJ mol?1) to the interaction energies obtained for the 9-methylguanine-acrylamide dimers.  相似文献   

4.
The influences on the thermal degradation and crystallization behaviors of poly(p-dioxanone) (PPDO) were initially investigated by adding bis-(2,6-diisopropylphenyl) carbodiimide (labeled as St). It was found that the addition of St could significantly enhance the thermal stability and crystallizability of PPDO. The thermal decomposition temperature of PPDO increased with the increase of the amount of St added. The thermal decomposition activation energies of PPDO increased from 94.2 to 130.8 kJ mol?1 in the case of 5 wt% St. The addition of St did not change the crystal structure of PPDO, while it increased the number of nucleation sites and improved the crystallizability of PPDO. The crystallization activation energies, calculated by the Kissinger method, for PPDO and PPDO/5 wt% St were ?111.4 and ?141.5 kJ mol?1, respectively, confirming the crystallizability of PPDO was enhanced after the addition of St.  相似文献   

5.
Relative energies of C60FN fluorofullerenes are reproduced reasonably well at the B3LYP/6- 311G** level of theory employed in conjunction with isodesmic transfluorination reactions, although overestimation of steric repulsions among non-bonded atoms is evident for species with larger values of N. On the other hand, the MNDO method is found to be less suitable for studies of fluorofullerene thermochemistry. The gas-phase standard enthalpy of formation of the C60F18 species is predicted to lie between ?1500 kJ mol?1 and ?1400 kJ mol?1.  相似文献   

6.
P. U. Singare 《Ionics》2016,22(8):1433-1443
The short-lived radiotracer isotopes were applied to study the kinetics and thermodynamic feasibility of iodide as well as bromide ion adsorption reactions using industrial-grade resin materials. Free energy of activation (ΔG ?) and energy of activation (E a) were calculated by using Arrhenius equation, enthalpy of activation (ΔH ?), and entropy of activation (ΔS ?) calculated by using the Eyring-Polanyi equation. These parameters were used to predict the thermodynamic feasibility of the two ion adsorption reactions performed by using Dowex SBR LC and Indion-810 resins. It was observed that during iodide ion adsorption reactions, the values of energy of activation (?18.79 kJ mol?1), enthalpy of activation (?21.37 kJ mol?1), free energy of activation (58.13 kJ mol?1), and entropy of activation (?0.26 kJ K?1 mol?1) calculated for Indion-810 resins were lower than the respective values of ?4.28 kJ mol?1, ?6.87 kJ mol?1, 64.97 kJ mol?1, and ?0.23 kJ K?1 mol?1 calculated for Dowex SBR LC under similar experimental conditions. Identical trends were observed for the two resins during bromide ion adsorption reactions. The low values of different thermodynamic parameters obtained for Indion-810 resins during both the ion adsorption reactions indicate that the reactions are thermodynamically more feasible using Indion-810 resins as compared to Dowex SBR LC resins. It is expected here that the present nondestructive technique can be extended further for different ions in the solution in order to predict the thermodynamic feasibility of different ion adsorption reactions for the range of resins which are widely used for treatment of industrial waste water effluent.  相似文献   

7.
M. Mugnai  G. Cardini  V. Schettino 《Molecular physics》2013,111(17-18):2203-2210
The solvation shell of aqueous formaldehyde has been studied by ab initio molecular dynamics. Two different DFT approaches using BLYP and PBE functionals were explored. The results show only a slightly different mobility in the solvation shells and allow characterization of the hydrogen bonded structure with a H2C?=?O··HOH hydrogen bond lifetime of ca. 3 ps. Formaldehyde hydrolysis was studied by following the reverse process, methanediol decomposition, by Blue Moon constrained MD showing that four water molecules are directly involved in the reaction and assisted by the whole hydration shell. The total energy of the aqueous methanediol to formaldehyde inter-conversion process is calculated with a barrier height of ca. 95?kJ?mol?1 while the corresponding free energy barrier is only ΔG??=?46?kJ?mol?1 at 300?K.  相似文献   

8.
The values of the enthalpy (53.3; 51.3; 20.0 kJ mol?1), entropy (?106; ?122; ?144 J mol?1K?1), and volume of activation (?29.1; ?31.0; ?cm3 mol?1), the reaction volume (?25.0; ?26.6; ?cm3 mol?1) and reaction enthalpy (?155.9; ?158.2; ?150.2 kJ mol?1) have been obtained for the first time for the ene reactions of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione 1 , with cyclohexene 4 , 1‐hexene 6 , and with 2,3‐dimethyl‐2‐butene 8 , respectively. The ratio of the values of the activation volume to the reaction volume (?VcorrVr ? n) in the ene reactions under study, 1 + 4 → 5 and 1 + 6 → 7 , appeared to be the same, namely 1.16. The large negative values of the entropy and the volume of activation of studied reactions 1 + 4 → 5 and 1 + 6 → 7 better correspond to the cyclic structure of the activated complex at the stage determining the reaction rate. The equilibrium constants of these ene reactions can be estimated as exceeding 1018 L mol?1, and these reactions can be considered irreversible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
We report the results of geometry optimized MP2(FULL)/6-31G(d) quantum chemical calculations with zero-point vibrational energies and thermal corrections of the isomeric 1-, 2- and 9-anthrols and the tautomeric anthrone. We find that 1- and 2-anthrols have nearly the same enthalpy of formation and are some 6?kJ?mol?1 more stable than their 9-isomer in accord with intuition based on steric hindrance. We find that anthrone is more stable than 9-anthrol by 13.7 ± 6.4?kJ?mol?1, in satisfactory agreement with the value of 23 ± 8?kJ?mol?1 suggested elsewhere by experiment and its associated analysis.  相似文献   

10.
The aim of the present study was to perform a quantum chemical investigation in the 1,2-hydrogen shift reaction for the PH2X and HPX molecules (X = F,Cl). Several phosphorus–halogen-bearing molecules were studied, including PH2F, PH2Cl, HPF, HPCl, HPFH, HPClH, PFH and PClH. The energies of stationary and saddle points on the ground electronic potential energy surface were investigated with post-Hartree–Fock methods [CCSD(T), MP2, QCISD] and different DFT functionals. The PH2F 1,2-hydrogen shift energy barrier was 75 kcal mol?1 at the CCSD(T) level and only a small increase in this value was observed for the HPF isomerisation. In contrast, the HPCl 1,2-hydrogen shift barrier is higher than the PH2Cl one, which presented a barrier height of 69 kcal mol?1 among CCSD(T) and composite methods. The rate constants of these unimolecular rearrangements varied from 10?44 to 10?38 s?1, and these isomerisation channels exhibited large half-lives. In addition, the heat of formation of each monohalogenophosphane was also calculated. The Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) analysis were also employed to characterise the differences between the phosphorous–halogen bonds.  相似文献   

11.
The reaction between O2 and the armchair surface of a model graphite molecule has been studied using density functional calculations at the B3LYP/6-31G(d) level of theory. Both equilibrium and transition state geometries were optimized to provide a fundamental understanding of the energetics and kinetics of the chemisorption, desorption, rearrangement, and migration reactions that contribute to carbon gasification. A small barrier of 18 kJ mol−1 was found for the chemisorption reaction, which is 578 kJ mol−1 exothermic overall, producing a stable quinone. A number of reaction pathways with barriers below 578 kJ mol−1 were characterized. Gasification of carbon occurs as CO, with barriers of 296 and 435 kJ mol−1 for the first and second CO loss, respectively. The stable quinone can also undergo a rearrangement reaction to form two ketene groups, with a barrier of 260 kJ mol−1. If the armchair edge is extended to include an adjacent aromatic ring, the oxide can migrate along the surface. This initially forms a furan-like bridge structure, with a barrier of just 89 kJ mol−1. A further barrier of 383 kJ mol−1 leads to CO desorption from the furan. The furan can also rearrange further with a barrier of 212 kJ mol−1 to form a five-membered lactone, the most stable structure identified on the potential energy surface. Rearrangement and migration reactions, which have not generally been incorporated into carbon gasification models, are shown to be potentially important pathways in carbon oxidation reactions.  相似文献   

12.
G3(MP2)//B3LYP calculations have been carried out on trans‐ and cis‐decalin, and their mono‐, di‐, tri‐, and tetraoxa‐analogs. The main purpose of the work was to obtain enthalpies of formation for these compounds, and to study the relative stabilities of the cistrans and positional isomers of the various (poly)oxadecalins. Comparison of the computational enthalpies of formation with the respective experimental ones, known only for the decalins and 1,3,5,7‐tetraoxadecalins, shows that in both cases the computational values are more negative than the experimental ones, the deviations being ?5 to ?7 kJ mol?1 for the decalins and ?12 to ?17 kJ mol?1 for the 1,3,5,7‐tetraoxadecalins. The respective computational enthalpies of cistrans isomerization, however, are in excellent to satisfactory agreement with the experimental data. The cistrans enthalpy differences vary from +11.0 kJ mol?1 for decalin to ?15.4 kJ mol?1 for 1,4,5,8‐tetraoxadecalin. Low relative enthalpy values were also calculated for the cis isomers of 1,8‐dioxadecalin (?3.7 kJ mol?1), 1,3,6‐trioxadecalin (?4.6 kJ mol?1), 1,3,8‐trioxadecalin (?9.7 kJ mol?1), 1,4,5‐ trioxadecalin (?5.6 kJ mol?1), 1,3,5,8‐tetraoxadecalin (?7.3 kJ mol?1), and 1,3,6,8‐tetraoxadecalin (?14.5 kJ mol?1). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The temporal variation of chemiluminescence emission from OH?(A2 Σ +) and CH?(A2 Δ) in reacting Ar-diluted H2/O2/CH4, C2H2/O2 and C2H2/N2O mixtures was studied in a shock tube for a wide temperature range at atmospheric pressures and various equivalence ratios. Time-resolved emission measurements were used to evaluate the relative importance of different reaction pathways. The main formation channel for OH? in hydrocarbon combustion was studied with CH4 as benchmark fuel. Three reaction pathways leading to CH? were studied with C2H2 as fuel. Based on well-validated ground-state chemistry models from literature, sub-mechanisms for OH? and CH? were developed. For the main OH?-forming reaction CH+O2=OH?+CO, a rate coefficient of k 2=(8.0±2.6)×1010 cm3?mol?1?s?1 was determined. For CH? formation, best agreement was achieved when incorporating reactions C2+OH=CH?+CO (k 5=2.0×1014 cm3?mol?1?s?1) and C2H+O=CH?+CO (k 6=3.6×1012exp(?10.9 kJ?mol?1/RT) cm3?mol?1?s?1) and neglecting the C2H+O2=CH?+CO2 reaction.  相似文献   

14.
15.
The gas‐phase elimination kinetics of selected ethyl esters of 2‐oxo‐carboxylic acid have been studied over the temperature range of 270–415 °C and pressures of 37–114 Torr. The reactions are homogeneous, unimolecular, and follow a first‐order rate law in a seasoned static reaction vessel, with an added free radical suppressor toluene. The observed overall and partial rate coefficients are expressed by the following Arrhenius equations:
  • Ethyl oxalyl chloride
  • log koverall (s?1) = (13.22 ± 0.45) ? (179.4 ± 4.9) kJ mol?1 (2.303 RT)?1
  • Ethyl piperidineglyoxylate
  • log k(CO2) (s?1) = (12.00 ± 0.30) ? (191.2 ± 3.9) kJ mol?1 (2.303 RT)?1
  • log k(CO) (s?1) = (12.60 ± 0.09) ? (210.7 ± 1.2) kJ mol?1 (2.303 RT)?1
  • log kt(overall) (s?1) = (12.22 ± 0.26) ? (193.4 ± 3.4) kJ mol?1 (2.303 RT)?1
  • Ethyl benzoyl formate
  • log k(CO2) (s?1) = (12.89 ± 0.72) ? (203.8 ± 9.0) kJ mol?1 (2.303 RT)?1
  • log k(CO) (s?1) = (13.39 ± 0.31) ? (213.3 ± 3.9) kJ mol?1 (2.303 RT)?1
  • log kt(overall) (s?1) = (13.24 ± 0.60) ? (205.8 ± 7.6) kJ mol?1 (2.303 RT)?1
The kinetic and thermodynamic parameters of these reactions, together with those reported in the literature, lead to consider three different mechanistic pathways of elimination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Theoretical investigation has been carried out on the mechanism, kinetics and thermochemistry of the gas-phase reactions between CHF2CF2OCH2CF3 and OH radical using a new hybrid density functional M06-2X/6-31+G(d,p) and G2(MP2)//M06-2X/6-31+G(d,p) methods. The most stable conformer of CHF2CF2OCH2CF3 is considered in our study and the possible H-abstraction reaction channels are identified. Each reaction channel shows an indirect H-abstraction reaction mechanism via the formation of pre-reactive complex. The rate coefficients are determined for the first time over a wide range of temperature 250–1000 K. At 298 K, the calculated total rate coefficient of kOH = 1.01×10?14 cm3 molecule?1 s?1 is in good agreement with the experimental results. The heats of formation for CHF2CF2OCH2CF3 and CF2CF2OCH2CF3 and CHF2CF2OCHCF3 radicals are estimated to be -1739.25, -1512.93 and -1523.94 kJ mol?1, respectively. The bond dissociation energies of the two C-H bonds are C(-H)F2CF2OCH2CF3: 423.34 kJ mol?1 and CHF2CF2OC(-H)HCF3: 411.87 kJ mol?1. The atmospheric lifetime of CHF2CF2OCH2CF3 is estimated to be around 4.5 years and the 100-year time horizon global warming potentials of CHF2CF2OCH2CF3 relative to CO2 is estimated to be 601.  相似文献   

17.
Solvent, temperature, and high pressure influence on the rate constant of homo‐Diels–Alder cycloaddition reactions of the very active hetero‐dienophile, 4‐phenyl‐1,2,4‐triazolin‐3,5‐dione (1), with the very inactive unconjugated diene, bicyclo[2,2,1]hepta‐2,5‐diene (2), and of 1 with some substituted anthracenes have been studied. The rate constants change amounts to about seven orders of magnitude: from 3.95.10?3 for reaction (1+2) to 12200 L mol?1 s?1 for reaction of 1 with 9,10‐dimethylanthracene (4e) in toluene solution at 298 K. A comparison of the reactivity (ln k2) and the heat of reactions (?r‐nH) of maleic anhydride, tetracyanoethylene and of 1 with several dienes has been performed. The heat of reaction (1+2) is ?218 ± 2 kJ mol?1, of 1 with 9,10‐dimethylanthracene ?117.8 ± 0.7 kJ mol?1, and of 1 with 9,10‐dimethoxyanthracene ?91.6 ±0.2 kJ mol?1. From these data, it follows that the exothermicity of reaction (1+2) is higher than that with 1,3‐butadiene. However, the heat of reaction of 9,10‐dimethylanthracene with 1 (?117.8 kJ mol?1) is nearly the same as that found for the reaction with the structural C=C counterpart, N‐phenylmaleimide (?117.0 kJ mol?1). Since the energy of the N=N bond is considerably lower (418 kJ/bond) than that of the C=C bond (611 kJ/bond), it was proposed that this difference in the bond energy can generate a lower barrier of activation in the Diels–Alder cycloaddition reaction with 1. Linear correlation (R = 0.94) of the solvent effect on the rate constants of reaction (1+2) and on the heat of solution of 1 has been observed. The ratio of the volume of activation (?V) and the volume of reaction (?Vr‐n) of the homo‐Diels–Alder reaction (1+2) is considered as “normal”: ?V/?Vr‐n = ?25.1/?30.95 = 0.81. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectra of HiPco SWNT and SWNT-pyrene films were measured in the 160–1800 cm?1 range. Due to the non-covalent interaction between SWNT and pyrene the most intensive component of the SWNT G mode (1590 cm?1) is downshifted by 2 cm?1 and becomes narrower. Also the intensity of the low-frequency component of the G mode (1550 cm?1) decreases by about 30%. Structures and interaction energies in the complexes of pyrene and zigzag (n, 0) SWNTs [6 ≤ n ≤ 20] were determined at the MP2 level of theory. The BSSE-free geometry optimization of the pyrene-zigzag (12,0) SWNT complex converged to a structure with a 1/2staggered conformation and with an intermolecular distance of 3.5 Å. The BSSE-free interaction energy in the complex is ?30.8 kj mol?1. Increasing of the nanotube diameter leads to a higher interaction energy. This energy becomes equal to ?37.2 kJ mol?1 in the case of a planar carbon surface.  相似文献   

19.
Based on energetic compound [1,2,5]‐oxadiazolo‐[3,4‐d]‐pyridazine, a series of functionalized derivatives were designed and first reported. Afterwards, the relationship between their structure and performance was systematically explored by density functional theory at B3LYP/6‐311 g (d, p) level. Results show that the bond dissociation energies of the weakest bond (N–O bond) vary from 157.530 to 189.411 kJ · mol?1. The bond dissociation energies of these compounds are superior to that of HMX (N–NO2, 154.905 kJ · mol?1). In addition, H1, H2, H4, I2, I3, C1, C2, and D1 possess high density (1.818–1.997 g · cm?3) and good detonation performance (detonation velocities, 8.29–9.46 km · s?1; detonation pressures, 30.87–42.12 GPa), which may be potential explosives compared with RDX (8.81 km · s?1, 34.47 GPa ) and HMX (9.19 km · s?1, 38.45 GPa). Finally, allowing for the explosive performance and molecular stability, three compounds may be suggested as good potential candidates for high‐energy density materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The interaction within the methane–methane (CH4/CH4), perfluoromethane–perfluoromethane (CF4/CF4) methane–perfluoromethane dimers (CH4/CF4) was calculated using the Hartree–Fock (HF) method, multiple orders of Møller–Plesset perturbation theory [MP2, MP3, MP4(DQ), MP4(SDQ), MP4(SDTQ)], and coupled cluster theory [CCSD, CCSD(T)], as well as the PW91, B97D, and M06-2X density functional theory (DFT) functionals. The basis sets of Dunning and coworkers (aug-cc-pVxZ, x?=?D, T, Q), Krishnan and coworkers [6-311++G(d,p), 6-311++G(2d,2p)], and Tsuzuki and coworkers [aug(df, pd)-6-311G(d,p)] were used. Basis set superposition error (BSSE) was corrected via the counterpoise method in all cases. Interaction energies obtained with the MP2 method do not fit with the experimental finding that the methane–perfluoromethane system phase separates at 94.5?K. It was not until the CCSD(T) method was considered that the interaction energy of the methane–perfluoromethane dimer (?0.69?kcal?mol?1) was found to be intermediate between the methane (?0.51?kcal?mol?1) and perfluoromethane (?0.78?kcal?mol?1) dimers. This suggests that a perfluoromethane molecule interacts preferentially with another perfluoromethane (by about 0.09?kcal?mol?1) than with a methane molecule. At temperatures much lower than the CH4/CF4 critical solution temperature of 94.5?K, this energy difference becomes significant and leads perfluoromethane molecules to associate with themselves, forming a phase separation. The DFT functionals yielded erratic results for the three dimers. Further development of DFT is needed in order to model dispersion interactions in hydrocarbon/perfluorocarbon systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号