首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The reaction of formic acid (HCOOH) with chlorine atom and amidogen radical (NH2) have been investigated using high level theoretical methods such BH&HLYP, MP2, QCISD, and CCSD(T) with the 6–311?+?G(2df,2p), aug-cc-pVTZ, aug-cc-pVQZ and extrapolation to CBS basis sets. The abstraction of the acidic and formyl hydrogen atoms of the acid by the two radicals has been considered, and the different reactions proceed either by a proton coupled electron transfer (pcet) and hydrogen atom transfer (hat) mechanisms. Our calculated rate constant at 298?K for the reaction with Cl is 1.14?×?10?13?cm3?molecule?1?s?1 in good agreement with the experimental value 1.8?±?0.12/2.0?×?10?13?cm3?molecule?1?s?1 and the reaction proceeds exclusively by abstraction of the formyl hydrogen atom, via hat mechanism, producing HOCO+ClH. The calculated rate constant, at 298?K, for the reaction with NH2 is 1.71?×?10?15?cm3?molecule?1?s?1, and the reaction goes through the abstraction of the acidic hydrogen atom, via a pcet mechanism, leading to the formation of HCOO+NH3.  相似文献   

2.
ABSTRACT

A theoretical investigation on oxidation reaction of ethyl vinyl ether (EVE) and .Cl are carried out in this paper. By employing M06-2x/6-31?+?g(d,p)//6-311++g(3df,2p) method, complex reaction mechanisms are assumed on the basis of thermodynamic data. All the .Cl-addition reactions are dominant channels. The corresponding major products, such as ethyl formate, acetaldehyde and several chloro compounds, are generated from .Cl-addition to double bond of EVE. These products play an important role in the formation of secondary organic aerosol. By employing MESMER grogram, rate coefficients of the primary reactions are computed in the temperature range of 200–400?K and the pressure range of 500–2000?Torr. Combined with the kinetic data and temperature, an Arrhenius equation is fitted as k EVE+Cl?=?1.54?×?10?10 exp (121.9/T). Also, the rate constant at 298?K and 760?Torr is calculated to be 2.17?×?10?10?cm3 molecule?1?s?1. Furthermore, the atmospheric lifetime of EVE with respect to .Cl is estimated to be 4.3–11.9?h in different regions. The short lifetime indicates that ·Cl-initiated oxidation is competitive in the degradation of EVE in some special areas. This work could confirm the experimental investigation and serve as the supplement of our previous theoretical studies.  相似文献   

3.
ABSTRACT

The atmospheric oxidation mechanisms of 1- and 2-propenol initiated by OH radical have been theoretically investigated at the CCSD(T)//BH&;HLYP/6-311?+?+G(d,p) level of theory. Conventional transition state theory was employed to predict the rate constants for the initial reaction channels. The calculations clearly indicate that OH-addition channels contribute maximum to the total reaction, both for 1- and 2-propenol, while H-abstraction channels can be neglected at the temperature range of 220–520?K. The calculated total rate constants at 298?K are 1.66?×?10?11 and 7.69?×?10?12 cm3?molecule?1?s?1 respectively for 1- and 2-propenol, which are in reasonable agreement with the experimental values of similar systems (vinyl ethers?+?OH reactions). The deduced Arrhenius expressions are k(OH?+?1-propenol)?=?1.43?×?10?12 exp[(743.7?K)/T] and k(OH?+?2-propenol)?=?2.86?×?10?12 exp[(310.5?K)/T] cm3?molecule?1?s?1. Under atmospheric condition, the OH-addition intermediates (CH3C?HCH(OH)2, CH3CH(OH)C?H(OH), CH3CH(OH)2?CH2, CH3?C(OH)CH2(OH)) are likely to react rapidly with O2, the theoretically identified major products for 1-propenol are HCOOH, CH3CHO and CH3CH(OH)CHO, and the dominant products for 2-propenol are CH3COOH, HCHO and CH3COCH2OH, both companied with the regeneration of OH and HO2 radicals (crucial reactive radicals in the atmosphere).  相似文献   

4.
Weichao Zhang 《Molecular physics》2013,111(23):2901-2917
The mechanism and products of the reaction of 2-methyl-3-buten-2-ol (MBO232) with Cl atoms in the presence of O2 have been elucidated by performing high-level quantum chemistry calculations. The geometries of the reactants, intermediates, transition states, and products are optimized at the MP2(full)/6-311G(d,?p) level, and their single-point energies are refined at the CCSD(T)/6-311?+?G(d,?p) level. The potential energy surface profiles have been constructed at the CCSD(T)/6-311?+?G(d,?p)//MP2(full)/6-311G(d,?p)?+?0.95?×?ZPE level of theory, and the possible channels involved in the reaction are also discussed. The calculations indicate that the reaction predominantly proceeds via the addition of Cl atoms to the double bond rather than the direct abstraction of the H atoms in MBO232. The nascent adducts (CH3)2C(OH)CHCH2Cl (IM1) and (CH3)2C(OH)CHClCH2 (IM2) do not undergo subsequent isomerization and dissociation reactions, but rather react with O2. The theoretical results show that the major products are CH2ClCHO and CH3C(O)CH3 for the reaction of MBO232?+?Cl in the presence of O2, which is in good agreement with the experimental finding.  相似文献   

5.
Kinetics and mechanism of the gas-phase reaction of CH3C(O)OCH(CH3)CH2OCH3 (MPA) with OH radicals in the presence of O2 and NO have been investigated theoretically by performing a high and reliable level of theory, viz., CCSD(T)/6-311?+?G(d,p)//BH&HLYP/6-311++G(d,p)?+?0.9335×ZPE. The calculations predict that the H-abstraction from the ?CH2?O? position of MPA is the most facile channel, which leads to the formation of the corresponding alkoxy radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 under atmospheric conditions. This activated radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 will undergo further rearrangement, fragmentation and oxidative reactions and predominantly leads to the formation of various products (methyl formate HC(O)OCH3 and acetic anhydride CH3C(O)OC(O)CH3). In the presence of water, acetic anhydride can convert into acetic acid CH3C(O)OH via the hydrolysis reaction. The calculated total rate constants over the temperature range 263–372?K are used to derive a negative activation energy (Ea= ?5.88 kJ/mol) and an pre-exponential factor (A?=?1.78×10?12 cm3 molecule?1 s?1). The obtained Arrhenius parameters presented here are in strong agreement with the experimental values. Moreover, the temperature dependence of the total rate constant over a temperature range of 263?1000?K can be described by k?=?5.60 × 10?14×(T/298?K)3.4×exp(1725.7?K/T) cm3 molecule?1 s?1.  相似文献   

6.
Relative kinetics of the reactions of OH radicals and Cl atoms with 3‐chloro‐2‐methyl‐1‐propene has been studied for the first time at 298 K and 1 atm by GC‐FID. Rate coefficients are found to be (in cm3 molecule?1 s?1): k1 (OH + CH2 = C(CH3)CH2Cl) = (3.23 ± 0.35) × 10?11, k2 (Cl + CH2 = C(CH3)CH2Cl) = (2.10 ± 0.78) × 10?10 with uncertainties representing ± 2σ. Product identification under atmospheric conditions was performed by solid phase microextraction/GC‐MS for OH reaction. Chloropropanone was identified as the main degradation product in accordance with the decomposition of the 1,2‐hydroxy alcoxy radical formed. Additionally, reactivity trends and atmospheric implications are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
More than thirty equilibrium and transition structures on the [CH3NS] potential energy surface have been located using the B3LYP/6-311 + + G(d,p) method. Thioformaldoxime (3) turns out to be the most stable isomer followed by thionitrone (2), a three-membered ring, thionitrosyl methane (1) and thiazyl methane. These isomers are connected to each other by 1,2H and 1,3H shifts and ring—chain rearrangement, but the associated energy barriers are rather high, making most of them stable with respect to unimolecular transformations. Starting from CH3 + NS, a possible initial atmospheric reaction, HCN formation appears to be the most favoured process through a cascade involvement of 1, 2 and 3. The standard heats of formation, ΔH 0 f,298 are calculated to be: 3, 149kJmol?1; and 1, 218kJmol?1; using the CCSD(T)/6-311+ +G(3df,2p) method, with an error of ±10kJ mol?1.  相似文献   

8.
Dual level of quantum mechanical calculations have been carried out for hydrogen abstraction from Piperazine [HN(CH2CH2)2NH] initiated by OH radical. Geometry optimisation and frequency calculations of all species involved in the titled reaction have been performed at M06-2X/6-31+G(d,p) level of theory. For the accuracy in the thermochemistry and kinetics data, single-point energy calculations have been further carried out at coupled cluster CCSD(T) method along with 6-311G(d,p) basis set. An energy profile diagram for the reaction has been plotted along with pre-reactive and post-reactive complexes at entrance and exit channels. Intrinsic reaction coordinates (IRCs) calculations have been performed for identification of real transition states that connect it via reactant to product. Our result shows that the H-atom abstraction takes place from the C–H position of Piperazine. The rate constant is calculated using canonical transition state theory (CTST) is found to be 2.86 × 10?10 cm3 molecule?1 s?1 which is in good agreement with the reported experimental rate constant (2.38 ± 0.28) × 10?10 cm3 molecule?1 s?1 at 298 K. We have also reported rate constant for the temperature range 300–500 K. Using group-balance isodesmic reaction, the standard enthalpies of formation for Piperazine and product radicals generated by hydrogen abstraction are reported. The branching ratios for both reaction channel (i.e. H-abstraction from –CH2 and –NH position of Piperazine) are found to be 93% and 7%, respectively. The calculated atmospheric life time of Piperazine is found to be 0.97 hour.  相似文献   

9.
ABSTRACT

The mechanism and products of the reaction of (Z)-2-penten-1-ol [(Z)-PO21] with OH radical in the presence of O2 have been elucidated by using high-level quantum chemical methods CCSD(T)/6-311+G(d,p)//BH&;HLYP/6-311++G(d,p). The calculations clearly indicate that addition channels contribute maximum to the total reaction and H-abstraction channels can be neglected at temperatures of 220–500 K. The rate constant for the reaction of OH radical with (Z)-PO21 at 298 K is computed to be 1.22 × 10?10 cm3 molecule?1 s?1, which is in stronger agreement with the previously reported experimental values. The kinetic data obtained over the temperature range 220?500 K are used to derive an non-Arrhenius expression: k = 3.69 × 10?13 × exp(1763.7/T) cm3 molecule?1 s?1. For the reaction of (Z)-PO21with OH radical in the presence of O2, the major primary reaction products found in this study are propanal [CH3CH2C(O)H] and glycolaldehyde [HOCH2C(O)H], whereas formaldehyde [HC(O)H], 2-hydroxybutanal [CH3CH2CH(OH)C(O)H] and the epoxide P18 are anticipated to be minor products. The calculated results are consistent with the recent experimental observations.  相似文献   

10.
Rate constants for the reactions of Cl atoms with CH3OCHCl2 and CH3OCH2CH2Cl were determined at (296 ± 2) K and atmospheric pressure using synthetic air as bath gas. Decay rates of these organic compounds were measured relative to the following reference compounds: CH2ClCH2Cl and n‐C5H12. Using rate constants of 1.33 × 10?12 and 2.52 × 10?10 cm3 molecule?1 sec?1 for the reaction of Cl atoms with CH2ClCH2Cl and n‐C5H12, respectively, the following rate coefficients were derived: k(Cl + CH3OCHCl2) = (1.05 ± 0.11) × 10?12 and k(Cl + CH3OCH2CH2Cl) = (1.14 ± 0.10) × 10?10, in units of cm3 molecule?1 s?1. The rate constants obtained were compared with previous literature data and a correlation was found between the rate coefficients of some CH3OCHR1R2 + Cl reactions and ΔElectronegativity of ? CHR1R2. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
本文使用OH激光诱导荧光方法研究了结构最简单的克里奇中间体CH2OO和CF3CF=CF2的反应动力学. 在压强为10 Torr条件下,测量了温度在283,298,308和318 K的反应速率常数,分别为(1.45±0.14)×10-13,(1.18±0.11)×10-13,(1.11±0.08)×10-13和(1.04±0.08)×10-13 cm3·molecule-1·s-1. 根据阿伦尼乌斯方程,获得该反应的活化能为(-1.66±0.21) kcal/mol. 在6.3∽70 torr压力范围内,未观察到该反应的速率常数存在压力相关.  相似文献   

12.
The kinetics of the O3, OH and NO3 radical reactions with diazomethane were studied in smog chamber experiments employing long-path FTIR and PTR-ToF-MS detection. The rate coefficients were determined to be k CH2NN+O3?=?(3.2?±?0.4)?×?10?17 and k CH2NN+OH?=?(1.68?±?0.12)?×?10?10 cm3 molecule?1 s?1 at 295?±?3?K and 1013?±?30 hPa, whereas the CH2NN?+?NO3 reaction was too fast to be determined in the static smog chamber experiments. Formaldehyde was the sole product observed in all the reactions. The experimental results are supported by CCSD(T*)-F12a/aug-cc-pVTZ//M062X/aug-cc-pVTZ calculations showing the reactions to proceed exclusively via addition to the carbon atom. The atmospheric fate of diazomethane is discussed.  相似文献   

13.
Theoretical studies have been carried out on the kinetics and thermochemistry of the thermal decomposition of the CH2FOCHFO radical formed during the photo-oxidation of CH2FOCH2F (HFE-152E) using the dual-level method of obtaining the optimised structure at DFT(M06-2X)/6-311++G(d,p) followed by a single-point energy calculation at the G3 level of theory. The rate constant for different reaction channels involved during the decomposition processes of CH2FOCHFO is evaluated at 298 K and 1 atm using canonical transition-state theory. The results point out that the C–H bond scission is the dominant path involving an energy barrier of 9.5 kcal mol?1 determined at the G3 level of theory. A potential energy diagram is constructed and the results are compared with the data available from the literature for a structurally similar molecule.  相似文献   

14.
High-level ab initio electronic structure calculations up to the CCSD(T) theory level, including extrapolations to the complete basis set (CBS) limit, resulted in high precision energetics of the tautomeric equilibrium in 2-substituted acetaldehydes (XH2C-CHO). The CCSD(T)/CBS relative energies of the tautomers were estimated using CCSD(T)/aug-cc-pVTZ, MP3/aug-cc-pVQZ, and MP2/aug-cc-pV5Z calculations with MP2/aug-cc-pVTZ geometries. The relative enol (XHC?=?CHOH) stabilities (ΔE e,CCSD(T)/CBS) were found to be 5.98?±?0.17, ?1.67?±?0.82, 7.64?±?0.21, 8.39?±?0.31, 2.82?±?0.52, 10.27?±?0.39, 9.12?±?0.18, 5.47?±?0.53, 7.50?±?0.43, 10.12?±?0.51, 8.49?±?0.33, and 6.19?±?0.18?kcal?mol?1 for X?=?BeH, BH2, CH3, Cl, CN, F, H, NC, NH2, OCH3, OH, and SH, respectively. Inconsistencies between the results of complex/composite energy computations methods Gn/CBS (G2, G3, CBS-4M, and CBS-QB3) and high-level ab initio methods (CCSD(T)/CBS and MP2/CBS) were found. DFT/aug-cc-pVTZ results with B3LYP, PBE0 (PBE1PBE), TPSS, and BMK density functionals were close to the CCSD(T)/CBS levels (MAD?=?1.04?kcal?mol?1).  相似文献   

15.
The rate coefficient for the gas-phase reaction of OH radical with α-pinene was measured at 298 K using relative rate methods, with propylene as a reference compound. The ratio of the rate coefficient for the reaction of OH radicals with α-pinene to that of with OH radicals with propylene was measured to be 1.77 ± 0.21. Considering the absolute value of the rate coefficient of the reaction of OH radicals with propylene as (3.01 ± 0.42)×10?11 cm3 molecule?1 s?1, the rate coefficient for the reaction of OH radicals with α-pinene was determined to be (5.33 ± 0.79)×10?11 cm3 molecule?1 s?1. To gain a deeper insight into the reaction mechanism, theoretical calculations were also carried out on this reaction. The rate coefficient of OH radical with α-pinene was calculated using canonical variational transition state theory with small-curvature tunnelling. The kinetics data obtained over the temperature range of 200–400 K were used to derive the Arrhenius expression: k(T) = 3.8×10?28 T5.2 exp[2897/T] cm3 molecule?1 s?1. The OH-driven atmospheric lifetime (τ) and ozone formation potential of α-pinene were calculated and reported in this work.  相似文献   

16.
The kinetics of hydrogen atom abstraction reactions of methyl difluoroacetate (CF2HCOOCH3) by OH radical has been studied by quantum mechanical method. The geometry optimisation and frequency calculation of the titled compound was performed with density functional theory using hybrid meta density functional MPWB1K with 6-31+G(d,p) basis set. Transition states have been determined and intrinsic reaction coordinate (IRC) calculation has been performed to ascertain that the transition from reactants to products was smooth through the corresponding transition state. Energy values are refined by making single point energy calculation at G3B3 level of theory and an energy level diagram is constructed. The standard enthalpies of formation of reactants and other species formed during the reaction were calculated using isodesmic method. The rate constants are calculated using canonical transition state theory and the overall rate constant is determined to be 1.35×10?13 cm3 molecule?1 s?1 at 298 K and 1 atmospheric pressure. Tunnelling has been taken into account in the determination of the rate constant because it plays a critical role at low temperature especially when transfer of hydrogen takes place. The calculated value is found to be in good agreement with the experimentally determined value of 1.48×10?13 cm3 molecule?1 s?1.  相似文献   

17.
Halogen bonds have received a great deal of attention in recent years. In this work, the interaction between fluorinated dimethyl ethers (nF = 0–4) and molecular chlorine has been investigated by the theoretical methods. The two molecules are bonded together by an O···Cl?Cl halogen bond and the interaction energies calculated at the MP2/aug-cc-pVDZ level range between ?15.5 (nF = 0) and ?6.1 (nF = 4) kJ mol?1. The correlations between interaction energies and proton affinity or ionisation potential of the ethers are discussed. The interaction between the molecules results in a small contraction of the CH bond of ethers and an elongation of the Cl?Cl bond. The data are analysed by a natural bond orbital analysis carried out at the wB97XD/6-311++G(d,p) level. The charge transfer from the ethers to Cl2 is weak, ranges between 0.044 and 0.008 e and occurs mainly to the external Cl atom. The elongation of the Cl?Cl bond is related to the occupation of the σ*(Cl?Cl) orbital and to the intermolecular hyperconjugation interaction between LP(O) and σ*(Cl?Cl) orbitals. The interaction between the ethers and chlorine induces an enhancement of the infrared intensity and Raman scattering activity of the ν(Cl?Cl) vibration.  相似文献   

18.
Abstract

In acetonitrile solutions, the exchange reaction is bimolecular in the Tl+ + 18C6 system, while in the Tl+ + pentaglyme system the associative-dissociative and the bimolecular mechanisms coexist at room temperature and the bimolecular exchange reaction dominates at 263° K. For the bimolecular mechanism in the case of Tl+ + 18C6 and the associative-dissociative mechanism in the case of Tl+ + pentaglyme, the activation energies of the exchange reactions change with temperature. At 298° K, in the Tl+ + 18C6 system the activation energy for the bimolecular exchange reaction is ≈ 2 kcal.mol?1 and exchange rate constant (k1) is (4.1 ± 0.1) × 107 s?1mol?1; in the Tl+ + pentaglyme system, the activation energy for the associative-dissociative exchange reaction is ≈ 5 kcal mol?1 and the decomplexation rate constant (k?2) is (2.2 ± 0.4) X 105 s?1. The activation energy for the bimolecular exchange in the Tl+ + pentaglyme system was determined to be 3.00 ± 0.05 kcal.mol?1 and the exchange rate constant (3.0 ± 0.1) X 108 s?1 mol?1.  相似文献   

19.
The rate coefficients of hydroxyl radical (OH) reaction with limonene were computed using canonical variational transition state theory with small-curvature tunnelling between 275 and 400 K. The geometries and frequencies of all the stationary points are calculated using hybrid density functional theory methods M06-2X and MPWB1K with 6-31+G(d,p), 6-311++G(d,p), and 6-311+G(2df,2p) basis sets. Both addition and abstraction channels of the title reaction were explored. The rate coefficients obtained over the temperature range of 275–400 K were used to derive the Arrhenius expressions: k(T) = 4.06×10?34 T7.07 exp[4515/T] and k(T) = 7.37×10?25 T3.9 exp[3169/T] cm3 molecule?1 s?1 at M06-2X/6-311+G(2df,2p) and MPWB1K/6-311+G(2df,2p) levels of theory, respectively. Kinetic study indicated that addition reactions are major contributors to the total reaction in the studied temperature range. The atmospheric lifetime (τ) of limonene due to its reactions with various tropospheric oxidants was calculated and concluded that limonene is lost in the atmosphere within a few hours after it is released. The ozone production potential of limonene was computed to be (14–18) ppm, which indicated that degradation of limonene would lead to a significant amount of ozone production in the troposphere.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号