首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of ionic size on the diffuse layer characteristics of a spherical double layer is studied using Monte Carlo simulation and density functional theory within the restricted primitive model. The macroion is modelled as an impenetrable charged hard sphere carrying a uniform surface charge density, surrounded by the small ions represented as charged hard spheres and the solvent is taken as a dielectric continuum. The density functional theory uses a partially perturbative scheme, where the hard sphere contribution to the one particle correlation function is evaluated using weighted density approximation and the ionic interactions are calculated using a second-order functional Taylor expansion with respect to a bulk electrolyte. The Monte Carlo simulations have been performed in the canonical ensemble. The detailed comparison is made in terms of zeta potentials for a wide range of physical conditions including different ionic diameters. The zeta potentials show a maximum or a minimum with respect to the polyion surface charge density for a divalent counterion. The ionic distribution profiles show considerable variations with the concentration of the electrolyte, the valency of the ions constituting the electrolyte, and the ionic size. This model study shows clear manipulations of ionic size and charge correlations in dictating the overall structure of the diffuse layer.  相似文献   

2.
One recently proposed self-consistent hard sphere bridge functional was combined with an exponential function exp(-cr) and a re-normalized indirect correlation function to construct the bridge function for fluid with hard core and interaction tail. In the present approach, the adjustable parameter α was determined by the thermodynamic consistency realized on the compressibility modulus, the re-normalization of the indirect correlation function was realized by a modified Mayer function with the interaction potential replaced by the perturbative part of the interaction potential. As an example, the present bridge function was combined with the Ornstein-Zernike (OZ) equation to predict structure and thermodynamics properties in very good agreement with the simulation data available for Lennard-Jones (L J). Based on the universality principle of the free energy density functional and the test particle trick, the numerical solution of the OZ equation was employed to construct the first order direct correlation function of the non-uniform fluid as a functional of the density distribution by means of the indirect correlation function. In the framework of the density functional theory, the numerically obtained functional predicted the density distribution of LJ fluid confined in two planar hard walls that is in good agreement with the simulation data.  相似文献   

3.
周世琦 《中国物理》2007,16(4):1167-1175
A universal theoretical approach is proposed which enables all hard sphere density functional approximations (DFAs) applicable to van der Waals fluids. The resultant DFA obtained by combining the universal theoretical approach with any hard sphere DFAs only needs as input a second-order direct correlation function (DCF) of a coexistence bulk fluid, and is applicable in both supercritical and subcritical temperature regions. The associated effective hard sphere density can be specified by a hard wall sum rule. It is indicated that the value of the effective hard sphere density so determined can be universal, i.e. can be applied to any external potentials different from the single hard wall. As an illustrating example, the universal theoretical approach is combined with a hard sphere bridge DFA to predict the density profile of a hard core attractive Yukawa model fluid influenced by diverse external fields; agreement between the present formalism's predictions and the corresponding simulation data is good or at least comparable to several previous DFT approaches. The primary advantage of the present theoretical approach combined with other hard sphere DFAs is discussed.  相似文献   

4.
F.J. Vesely 《Molecular physics》2013,111(5):999-1015
A heuristic model for pseudospherical molecules is proposed. The model interaction consists of a simple Lennard-Jones potential with an added intermolecular torque which depends on the relative ‘surface velocity’ of colliding particles. Certain unphysical features of the related rough hard sphere model can be avoided in a natural way. Mean squared forces and mean squared torques may be calculated directly from the Lennard-Jones pair correlation function. Results of molecular dynamics calculations on 108-particle rough Lennard-Jones systems are presented.  相似文献   

5.
The Ornstein Zernike equation is solved with the Rogers Young approximation for bulk hard sphere fluidand Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combinedwith the test particle method is employed to determine numerically the function relationship of bridge functional as afunction of indirect correlation function. It is found that all of the calculated points from different phase space statepoints for a same type of fluid collapse onto a same smooth curve. Then the numerically obtained curve is used tosubstitute the analytic expression of the bridge functional as a function of indirect correlation function required in themethodology [J. Chem. Phys. 112 (2000) 8079] to deterrnine the density distribution of non-uniform hard spherefluid and Lennard Jones fluid. The good agreement of theoretical predictions with the computer simulation data isobtained. The present numerical procedure incorporates the knowledge of bulk fluid radial distribution function intothe constructing of the density functional approximation and makes the original methodology more accurate and moreflexible for various interaction potential fluid.  相似文献   

6.
A new bridge functional as a function of indirect correlation function was proposed, which was basedon analysis on the asymptotic behavior of the Ornstein-Zernike (OZ) equation system and a series expansion whoserenormalization resulted in an adjustable parameter determined by the thermodynamics consistency condition. Theproposed bridge functional was tested by applying it to bulk hard sphere and hard core Yukawa fluid for the predictionof structure and thermodynamics properties based on the OZ equation. As an application, the present bridge functionalwas employed for non-uniform fluid of the above two kinds by means of the density functional theory methodology, theresulting density distribution profiles were in good agreement with the available computer simulation data.  相似文献   

7.
A systematic study of zeta potential for a spherical double layer (SDL) around a colloidal particle in electrolyte solutions, is performed using density functional theory and Monte Carlo simulation. The usual recipe under the solvent primitive model is employed to model the system, where macroion, counterions, and coions are represented by charged hard spheres of uniform charge density and the presence of solvent is taken into account by modelling it as neutral hard spheres. All the components of the system are embedded in a dielectric continuum in order to consider the electrostatic effect of the solvent. The density functional theory employs a suitable weighted density approximation to calculate the hard-sphere contribution, whereas the residual electrostatic interactions are calculated as a small perturbation around the uniform fluid. The zeta potential profiles of a SDL in the presence of a number of electrolytes have been calculated and are found to be considerably influenced in the presence of solvent with an increase in the concentration of the electrolyte. The theory successfully predicts the maxima and sign reversal of the zeta potential profiles at high macroion surface charge density and in the presence of multivalent counterions, as obtained from the Monte Carlo simulation.  相似文献   

8.
Anna Oleksy 《Molecular physics》2013,111(18):2871-2883
As a first step towards a density functional theory (DFT) of wetting by ionic solutions we examine the density profiles of ions and solvent molecules confined near a charged wall, or between two walls, and the corresponding interfacial properties, including adsorption, surface tension, solvation force and electrostatic properties, within the semi-primitive model (SPM) of solutions made up of hard sphere solvent particles and charged hard spheres. Both monovalent and divalent cations with species-dependent diameters are considered. The density functional includes the best available Rosenfeld hard-sphere functional, as well as mean-field and Coulomb correlation contributions. The simpler mean-field functional is found to be adequate, at least for monovalent ions. The size differences lead to an interesting ‘fine structure’ of the density and charge density profiles. Cohesive interactions between all species are shown to lead to significant changes in the density profiles.  相似文献   

9.
ABSTRACT

Grand canonical Monte Carlo simulation results are reported for the structure and capacitance of a planar electric double layer containing off-centre charged rigid sphere cations and centrally charged rigid sphere anions. The ion species are assigned asymmetric valencies, +2:?1 and +1:?2, respectively, and set in a continuum dielectric medium (solvent) characterised by a single relative permittivity. An off-centre charged ion is obtained by displacing the ionic charge from the centre of the sphere towards its surface, and the physical double layer model is completed by placing the ionic system next to a uniformly charged, non-penetrable, non-polarizable planar electrode. Structural results such as electrode-ion singlet distribution functions, ionic charge density and orientation profiles are complemented by differential capacitance results at electrolyte concentrations of 0.2?mol/dm3 and 1?mol/dm3, respectively, and for various displacements of the cationic charge centre. The effect of asymmetry due to off-centre cations and valency asymmetry on the double layer properties is maximum for divalent counterions and when the cation charge is closest to the hard sphere surface.  相似文献   

10.
We use a new configuration-based version of linear response theory to efficiently solve self-consistent mean field equations relating an effective single particle potential to the induced density. The versatility and accuracy of the method is illustrated by applications to dewetting of a hard sphere solute in a Lennard-Jones fluid, the interplay between local hydrogen bond structure and electrostatics for water confined between two hydrophobic walls, and to ion pairing in ionic solutions. Simulation time has been reduced by more than an order of magnitude over previous methods.  相似文献   

11.
The direct correlation function as obtained by Baxter for a sticky hard sphere potential, which is significant improvement over that of the hard sphere potential, has been used in the evaluation of the structure function of aluminium and lead. The values obtained by the present method are in good agreement with experiment.  相似文献   

12.
In this work, the effective interaction between hard sphere colloidal particles in the presence of a hard sphere solvent, both dispersed either in a disordered quenched matrix of hard spheres or in the random matrix of freely overlapping obstacles is analyzed, using the replica Ornstein-Zernike (ROZ) integral equations. The ROZ equations are supplemented by the hypernetted chain closure. The presence of either disordered or random matrix is manifested in the attractive minima of the colloid-colloid potential of mean force (PMF), in addition to a set of minima due to the presence of solvent species. The effects of matrix microporosity and solvent density on the PMF and the intercolloidal forces are investigated. This project has been supported in part by the National Council for Science and Technology of Mexico (CONACyT) under Grant 25301-E.  相似文献   

13.
《Physics letters. A》1986,117(3):127-131
The density functional theory of freezing of hard spheres is extended to the case where the system is submitted to a given external potential of low lattice symmetry. It is shown that this constraint is very effective in stabilizing the low density metastable hard sphere solid.  相似文献   

14.
From point of view of weighted density procedure, it isguessed that a Percus-Yevick (PY) compressibility excess free energydensity, appearing in the Kierlik--Rosinberg type fundamentalmeasure functional (KR-FMF) and expressed in terms of scaledparticle variables, can be substituted by a corresponding expressiondictated by a more accurate Mansoori-Carnahan-Starling-Leland(MCSL) equation of state, while retaining the original weightingfunctions; it is numerically indicated that the resultantundesirable non-self-consistency between the PY type weightingfunction and MCSL type excess free energy density had no bad effecton the performance of the resultant augmented KR-FMF which, on theone hand, preserves the exact low-density limit of the originalKR-FMF and holds a high degree of pressure self-consistency, on theother hand, improves significantly, as expected, the predictions ofdensity profile of hard sphere fluid at single hard wall contactlocation and its vicinity, and of the bulk hard sphere second orderdirect correlation function (DCF), obtained from functionaldifferentiation. The FMF is made applicable to inhomogeneousnon-hard sphere fluids by supplementing a functional perturbationexpansion approximation truncated at the lowest order with summationof higher order terms beyond the lowest term calculated by the FMFfor an effective hard sphere fluid; the resultant extended FMF onlyneeds second order DCF and pressure of the fluid considered atcoexistence state as inputs, consequently is applicable whether theconsidered temperature is above critical point or below criticalpoint. The extended MCSL-augmented KR-FMF is found to be endowedwith an excellent performance for predictions of density profile andsurface tension by comparing the present predictions of these twoquantities with available computer simulation data for inhomogeneoushard core attractive Yukawa fluid and Lennard-Jones fluid.  相似文献   

15.
We derive an exact equation for density changes induced by a general external field that corrects the hydrostatic approximation where the local value of the field is adsorbed into a modified chemical potential. Using linear response theory to relate density changes self-consistently in different regions of space, we arrive at an integral equation for a hard sphere fluid that is exact in the limit of a slowly varying field or at low density and reduces to the accurate Percus-Yevick equation for a hard core field. This and related equations give accurate results for a wide variety of fields.  相似文献   

16.
A phenomenological model, in which the interactions between the nearest-neighbor (NN) atoms are described as bondings but not hard sphere contacts, is proposed to explain the unexpected reduced buckling in surface alloy systems. In the model, the forces acting on an adsorbate atom from its NN substrate atoms in different layers may be either repulsive or attractive, depending on whether the bond between the adsorbate atom and its NN substrate atoms is compressed or stretched. It is found that the forces on the adsorbate atom from its NN substrate atoms in the sub-surface layer play a more important role for the buckling of surface alloy than those from its NN substrate atoms in the surface layer do. The bucklings expected by the model are significantly smaller than those predicted by the simple hard sphere model and are in good agreement with the experiments when the equilibrium bond length of the NN adsorbate-substrate atom pairs is taken as the sum of the corresponding metal radii.  相似文献   

17.
Error analysis of a practical energy density sensor   总被引:1,自引:0,他引:1  
The investigation of an active control system based on acoustic energy density has led to the analysis and development of an inexpensive three-axes energy density sensor. The energy density sensor comprises six electret microphones mounted on the surface of a 0.025-m (1 in.) radius sphere. The bias errors for the potential, kinetic, and total energy density as well as the magnitude of intensity of a spherical sensor are compared to a sensor comprising six microphones suspended in space. Analytical, computer-modeled, and experimental data are presented for both sensor configurations in the case of traveling and standing wave fields, for an arbitrary incidence angle. It is shown that the energy density measurement is the most nearly accurate measurement of the four for the conditions presented. Experimentally, it is found that the spherical energy density sensor is within +/- 1.75 dB compared to reference measurements in the 110-400 Hz frequency range in a reverberant enclosure. The diffraction effects from the hard sphere enable the sensor to be made more compact by a factor of 3 compared to the sensor with suspended microphones.  相似文献   

18.
An exact solution of the mean spherical approximation for charged hard spheres in a neutralizing background is used to calculate various static properties of the classical one-component plasma in the strong coupling regime. The expressions involved are simple and analytic, and involve the charged hard sphere diameter as the only unknown parameter, which we determine using an approximate scaling property of the direct correlation function. Results obtained for structural correlation functions and various thermodynamic quantities are in very good agreement with the Monte Carlo simulation data.  相似文献   

19.
The influence of gravity on the long-time behavior of the mean squared displacement in glasses of polydisperse colloidal hard spheres was studied by means of real-space fluorescent recovery after photobleaching. We present, for the first time, a significant influence of gravity on the mean squared displacements of the particles. In particular, we observe that systems which are glasses under gravity (with a gravitational length on the order of tens of micrometers) show anomalous diffusion over several decades in time if the gravitational length is increased by an order of magnitude. No influence of gravity was observed in systems below the glass transition density. We show that this behavior is caused by gravity dramatically accelerating aging in colloidal hard sphere glasses. This behavior explains the observation that colloidal hard sphere systems which are a glass on Earth rapidly crystallize in space.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号