首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
纳米通道内气体剪切流动的分子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
张冉  谢文佳  常青  李桦 《物理学报》2018,67(8):84701-084701
采用分子动力学模拟方法研究了表面力场对纳米通道内气体剪切流动的影响规律.结果显示通道内的气体流动分为两个区域:受壁面力场影响的近壁区域和不受壁面力场影响的主流区域.近壁区域内,气体流动特性和气体动力学理论预测差别很大,密度和速度急剧增大并出现峰值,正应力变化剧烈且各向异性,剪切应力在距壁面一个分子直径处出现突变.主流区域的气体流动特性与气体动力学理论预测相符合,该区域内的密度、正应力与剪切应力均为恒定值,速度分布亦符合应力-应变的线性响应关系.不同通道高度及密度下,近壁区域的归一化密度、速度及应力分布一致,表明近壁区域的气体流动特性仅由壁面力场所决定.随着壁面对气体分子势能作用的增强,气体分子在近壁区域的密度和速度随之增大,直至形成吸附层,导致速度滑移消失.通过剪切应力与切向动量适应系数(TMAC)的关系,得到不同壁面势能作用下的TMAC值,结果表明壁面对气体分子的势能作用越强,气体分子越容易在壁面发生漫反射.  相似文献   

2.
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d=3 and d=2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d=1. This result suggests the equivalence between Bose and Fermi gases established in d=1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.  相似文献   

3.
Second virial coefficients for the density dependence of a number of electric properties are calculated for neon gas. Employing an accurate CCSD(T) potential for the Ne2 van der Waals dimer and interaction-induced electric dipole polarizabilities and hyperpolarizabilities obtained from CCSD response theory, we evaluated the dielectric, refractivity, Kerr and ESHG second virial coefficients using both a semiclassical and a quantum statistical approach. The results cover a wide range of temperatures and are expected to be more reliable than the available experimental and empirical data. Quantum effects are found to be important only for temperatures below 100 K. The frequency-dependence of the refractivity virial coefficient is found to be small, but not negligible. For frequencies in the visible region it accounts for a few percent of the final results. For the ESHG virial coefficient of neon, frequency dependence is found to be very important, accounting for 20–25% of the second virial coefficient at the typical frequencies employed in experiments.  相似文献   

4.
Mayer-sampling Monte Carlo (MSMC) has enabled computation of higher-order virial coefficients than previously possible for a variety of potential models, but it is not required for computation of the entire virial coefficient for models that are spherically symmetric: approximations that result from the hypernetted-chain (HNC) or Percus–Yevick (PY) integral-equation theories in conjunction with the compressibility equation (c) or virial equation (v) can be computed quickly by fast Fourier transforms. For the fourth and fifth virial coefficients of the Lennard–Jones potential (with parameters σ and ε), we demonstrate that the corrections to each of the four approximations (HNC(c), HNC(v), PY(c), and PY(v)) are faster to compute to a desired precision by MSMC than the full coefficient itself, with the exception of the PY(v) correction at fifth order, and that the optimal decomposition with regard to precision can be identified using a fraction of the steps required to obtain precise virial coefficients. At reduced temperatures kT/ε greater than 4, the PY(c) correction is fastest to compute by MSMC at both fourth and fifth orders. For lower temperatures, the HNC(v) decomposition is most efficient at fourth order, while the HNC(c) decomposition is most efficient at fifth order. These results are specific to the Lennard–Jones potential, but the method for determining the optimal decomposition is applicable to any spherically symmetric potential.  相似文献   

5.
The contribution of essentially quantum internal molecular motions to the second virial coefficient B2 of water vapor is analyzed in the framework of the path integral approach. A general purpose ab initio polarizable force field QMPFF2 or a nonpolarizable three-site water model are used with oscillator and Morse valence potentials. It is demonstrated that the contribution may be significant but depends strongly on the form of the intramolecular potential. In the case of the more realistic stretching Morse potential, inclusion of quantum molecular flexibility into the simulation reduces the virial coefficient by 20%-40%. Also, the internal modes make a contribution to the difference in the virial coefficient for light and heavy water, which is opposite to that of the intermolecular motions, so that the net effect can even change the sign at higher temperatures.  相似文献   

6.
李鹤龄 《大学物理》2006,25(4):30-32
求出了任意维经典非理想气体的硬心势、方阱势和Lennard-Jones势的第二位力系数,并给出了计算更高位力系数的方法与途径.结果表明:对于Lennard-Jones势,只有当维数n<6时,第二位力系数才收敛.  相似文献   

7.
Wertheim's theory is used to determine the critical properties of chains formed by m tangent spheres interacting through the pair potential u(r). It is shown that within Wertheim's theory the critical temperature and compressibility factor reach a finite non-zero value for infinitely long chains, whereas the critical density and pressure vanish as m -1.5. Analysing the zero density limit of Wertheim's equation or state for chains it is found that the critical temperature of the infinitely long chain can be obtained by solving a simple equation which involves the second virial coefficient of the reference monomer fluid and the second virial coefficient between a monomer and a dimer. According to Wertheim's theory, the critical temperature of an infinitely long chain (i.e. the Θ temperature) corresponds to the temperature where the second virial coefficient of the monomer is equal to 2/3 of the second virial coefficient between a monomer and dimer. This is a simple and useful result. By computing the second virial coefficient of the monomer and that between a monomer and a dimer, we have determined the Θ temperature that follows from Wertheim's theory for several kinds of chains. In particular, we have evaluated Θ for chains made up of monomer units interacting through the Lennard-Jones potential, the square well potential and the Yukawa potential. For the square well potential, the Θ temperature that follows from Wertheim's theory is given by a simple analytical expression. It is found that the ratio of Θ to the Boyle and critical temperatures of the monomer decreases with the range of the potential.  相似文献   

8.
Approximate expressions for the fourth and fifth virial coefficients of binary hard-sphere fluid mixtures are derived. The procedure used to obtain these expressions is based on that previously proposed by Wheatley [J. chem. Phys., 111, 5455 (1999)], but slightly modified. Wheatley's procedure starts from a prescribed general analytical form of the virial coefficients, from which the particular expression for each virial coefficient is obtained by imposing to the general form a number of limiting conditions. Here, we propose an alternative general expression of the virial coefficients and derive one more condition. This condition is satisfied when the fourth and fifth virial coefficients are expressed in the form we propose, but not when they are expressed in Wheatley's form. The agreement of the proposed analytical expressions with exact numerical data is excellent. The procedure can be extended to higher virial coefficients, although the lack of exact numerical data prevents any comparison.  相似文献   

9.
The ideal gas has been reinvestigated in the framework of Tsallis nonextensive statistics, which can be called nonextensive gas. According to the modified thermodynamic relationships, and applying the nonextensive gas model to analyze actual gas, the relationship between the nonextensive parameter and the second virial coefficient can be deduced. On the other hand, this coefficient can also be expressed as the integration of interaction potential between the molecules of actual gas. This indicates that the nonextensive parameter may be related to the interaction potential. Our further analysis to the relation seems to imply that the nonextensive parameter is irrelevant to the thermodynamic temperature of the gas.  相似文献   

10.
J. Ram  Y. Singh 《Molecular physics》2013,111(3):539-547
The first quantum correction to the virial coefficients of the equation of state of a fluid is derived in the presence of a weak three-body potential ?(i, j, k). Results for the third and fourth virial coefficients are given. Representing the potential energy of interaction of a pair and a triplet, by the Lennard-Jones (12-6) model and the triple dipole dispersion potential model of Axilrod and Teller, the first quantum correction to the third virial coefficient is calculated for many values of T*. The theoretical result is compared with the experimental data of helium.  相似文献   

11.
H. Moraal 《Physica A》1975,83(1):57-71
In the Percus-Yevick and convolution-hypernetted-chain equations obtained in the previous paper, a density expansion for the correlation functions is introduced. To first order in the density, the so-obtained equations are identical and exact. By solving these, the pair correlation functions for linear molecules are obtained explicitly to first order in the density and for arbitrary order in the potential perturbation expansion. From these, the second and third virial coefficients can be extracted for all orders. A generalized charge is defined and used to give generalized multipole expansions for the intermolecular potential. Explicit expressions for this potential model are given up to fourth order. It is shown how the correlation functions, and second and third virial coefficients can be obtained to fourth order for any intermolecular potential with the same perturbation structure.  相似文献   

12.
C. Vega 《Molecular physics》2013,111(15):973-985
A new algorithm to compute the virial coefficients of multicomponent mixtures is proposed. The number of graphs that must be evaluated increases dramatically in a multicomponent mixture so that it becomes difficult to enumerate and compute all possible graphs. However, once all of them are known and evaluated, the virial coefficient of the mixture can be evaluated for any composition. If one is interested in the virial coefficient of a mixture of a certain composition, then a simpler approach can be followed. Starting from the graphs of a pure fluid, we assign a random chemical identity to each of the molecules of the graph. The probability of assigning a given chemical identity is taken from the composition of the mixture. In this way composition is treated as a random variable within the Monte Carlo procedure which determines the virial coefficient. The algorithm is checked by comparison with the virial coefficients of binary hard spheres mixtures which are well known. Good agreement is found. The procedure is then extended to multicomponent mixtures of hard spheres. Finally the procedure is applied to the determination of the virial coefficients of a flexible molecule. For flexible molecules the possible configurations of the molecules are treated as different components of the mixture. In this way we present what appears to be the first determination of the third and fourth virial coefficients of polymers in the continuum.  相似文献   

13.
In this paper, we show how to recover the low-temperature and high-density information of ideal quantum gases from the high-temperature and low-density approximation by the Padéapproximant. The virial expansion is a high-temperature and low-density expansion and in practice, often, only the first several virial coefficients can be obtained. For Bose gases, we determine the BEC phase transition from a truncated virial expansion. For Fermi gases, we recover the low-temperature and high-density result from the virial expansion.  相似文献   

14.
本文以两中心的Lennard—Jones(2CLJ)流体为研究对象,通过引入与温度相关的势能参数,提出了改进型的2CLJDQP势能函数模型。应用此模型计算了乙烷(C2H6)、六氟乙烷(C2F6)、氟甲烷(CH3F)、氯甲烷(CH3C1)、1,1,1-三氟乙烷(CH3CF3)、二氟乙烷(CH3CHF2)的第二维里系数,较...  相似文献   

15.
Techniques to adapt the hit-and-miss Monte-Carlo numerical integration are proposed with the aim to determine virial coefficients up to eighth order in fluids of hard convex bodies, hard spheres with an attractive square-well potential and a two-component mixture of hard spheres. These algorithms make use of look-up tables of all the blocks contributing to the coefficients. Each type of block is represented in the tables by several entries. These correspond to all possible topologically equivalent graphs that can be generated by the Monte-Carlo process. This rendered the Monte-Carlo method statistically more efficient. In the case of a two-component system the look-up tables had to have representations of blocks having two sorts of vertices. The reported data are: improved values of the seventh and eighth virial coefficients for hard spheres, the sixth, seventh and eighth coefficients of spheroids, spherocylinders and cutspheres, fifth virial coefficient of spheres with a square-well potential of relative range 1.25; 1.5; 1.75 and 2.0 and the partial contributions of the sixth virial coefficient for a mixture of hard spheres with the size ratio 0.1.  相似文献   

16.
A. Boushehri 《Physica A》1979,97(1):206-210
An inversion procedure is used to obtain from the extended law of corresponding states the interaction potential over a range of reduced temperature extending from 0.5 to 25. This directly determined potential is in excellent agreement with the Lee potentials in the intermediate region. The consistency between diffusion coefficients and second virial coefficients is checked.  相似文献   

17.
A strongly correlated Fermi system plays a fundamental role in very different areas of physics, from neutron stars, quark–gluon plasmas, to high temperature superconductors. Despite the broad applicability, it is notoriously difficult to be understood theoretically because of the absence of a small interaction parameter. Recent achievements of ultracold trapped Fermi atoms near a Feshbach resonance have ushered in enormous changes. The unprecedented control of interaction, geometry and purity in these novel systems has led to many exciting experimental results, which are to be urgently understood at both low and finite temperatures. Here we review the latest developments of virial expansion for a strongly correlated Fermi gas and their applications on ultracold trapped Fermi atoms. We show remarkable, quantitative agreements between virial predictions and various recent experimental measurements at about the Fermi degenerate temperature. For equations of state, we discuss a practical way of determining high-order virial coefficients and use it to calculate accurately the long-sought third-order virial coefficient, which is now verified firmly in experiments at ENS and MIT. We discuss also virial expansion of a new many-body parameter—Tan’s contact. We then turn to less widely discussed issues of dynamical properties. For dynamic structure factors, the virial prediction agrees well with the measurement at the Swinburne University of Technology. For single-particle spectral functions, we show that the expansion up to the second order accounts for the main feature of momentum-resolved rf-spectroscopy for a resonantly interacting Fermi gas, as recently reported by JILA. In the near future, more practical applications with virial expansion are possible, owing to the ever-growing power in computation.  相似文献   

18.
The coefficients in power series in the variable time that describe relaxation in a cooperative system can be calculated using a combinatorial approach where one considers how many ways one can introduce a given number of properly defined events in a system. The coefficients obtained in this manner can be related to the equilibrium virial coefficients for a mixture. If one assumes rapid internal equilibration, the relaxation process can be expressed completely in terms of the viral coefficients for a mixture with at most one solute particle, or, in some cases, just the virial coefficients for a single-component system. Thus, equilibrium virial coefficients can give useful information about the time evolution of processes in cooperative systems.  相似文献   

19.
The thermodynamic properties of the Stockmayer fluid in an applied field are studied using theory and computer simulation. Theoretical expressions for the second and third virial coefficients are obtained in terms of the dipolar coupling constant (λ, measuring the strength of dipolar interactions as compared to thermal energy) and dipole–field interaction energy (α, being proportional to the applied field strength). These expressions are tested against numerical results obtained by Mayer sampling calculations. The expression for the second virial coefficient contains terms up to λ4, and is found to be accurate over realistic ranges of dipole moment and temperature, and over the entire range of the applied field strength (from zero to infinity). The corresponding expression for the third virial coefficient is truncated at λ3, and is not very accurate: higher order terms are very difficult to calculate. The virial coefficients are incorporated in to a thermodynamic theory based on a logarithmic representation of the Helmholtz free energy. This theory is designed to retain the input virial coefficients, and account for some higher order terms in the sense of a resummation. The compressibility factor is obtained from the theory and compared to results from molecular dynamics simulations with a typical value λ = 1. Despite the mathematical approximations of the virial coefficients, the theory captures the effects of the applied field very well. Finally, the vapour–liquid critical parameters are determined from the theory, and compared to published simulation results; the agreement between the theory and simulations is good.  相似文献   

20.
The intermolecular potential energy functions for krypton and xenon have been determined using new semi-inversion techniques. These techniques, which have previously been applied to the data for argon, enable information about intermolecular forces to be obtained directly from second virial coefficient and gas viscosities measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号