首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i = x, y, z) of the rhombic Cu2+ centres in the CuGaSe2 crystal are determined from the high-order perturbation formulae based on the cluster approach (sometimes also called two-spin-orbit parameter model). In the studies, some parameters in the analysis of g factors for the same centre within the tetragonal symmetry approximation in the previous paper are used, and the parameter due to the perturbation of rhombic crystal field caused by a charge compensator at, e.g., [110] direction are considered. As the result of a fitting process, the determined spin-Hamiltonian parameters are in reasonable agreement with the experimental values. The results are discussed.  相似文献   

3.
The complete diagonalisation (of energy matrix) method based on the two-spin-orbit-parameter model is applied to unifiedly calculate the spin-Hamiltonian parameters (g factors g//, g and hyperfine structure constants A//, A) and optical band positions for Ni+ ion in silver gallium selenide (AgGaSe2) crystal. In the model, besides the contribution due to the spin-orbit parameter of central dn ion (i.e., the one-spin-orbit-parameter model in the traditional crystal-field theory), that of ligand ions are taken into account. The calculated results are reasonably consistent with the experimental values. The local structure of Ni+ centre in AgGaSe2 is estimated through the calculation. The complete diagonalisation method based on the one-spin-orbit-parameter model is also applied to calculate these electron paramagnetic resonance and optical data. It is found that although the calculated optical band positions are close to those based on the two-spin-orbit-parameter model and hence to the experimental values, the calculated spin-Hamiltonian parameters (in particular, the g factors) are in disagreement with the experimental values. The latter point is further confirmed from the calculations with the perturbation method. So, for the rational calculations of spin-Hamiltonian parameters of dn clusters with ligand having large spin-orbit parameter, the contributions due to spin-orbit parameters of both the central dn ion and ligand ion should be contained.  相似文献   

4.
5.
The eight optical spectral band positions and three spin-Hamiltonian parameters (g factors g//, g and zero-field splitting D) of V2+ ions in trigonal CdCl2 crystal are calculated together from the complete diagonalisation (of energy matrix) method (CDM) based on the two-spin-orbit-parameter model (also called the cluster approach). In the model, differing from the usual one-spin-orbit-parameter model in the conventional crystal-field theory (where only the contribution to spin-Hamiltonian parameters due to the spin-orbit parameter of central dn ion is considered), both the contributions from the spin-orbit parameter of central dn ion and that of ligand ions are taken into account. The calculated results show reasonable agreement with the experimental values. The local lattice relaxation in the vicinity of V2+ ion due to the introduction of V2+ impurity is acquired from the calculations. The calculations of spin-Hamiltonian parameters from the CDM based on the one-spin-orbit-parameter and those from the perturbation theory method based on the two-spin-orbit-parameter model are also made for comparison. The results are discussed.  相似文献   

6.
The electron paramagnetic resonance (EPR) parameters (zero-field splitting D and g factors g||, g) of Cr4+ ions in Ca2GeO4 crystals have been calculated from the complete high-order perturbation formulas of EPR parameters for a 3d2 ion in trigonal MX4 clusters. In these formulas, in addition to the contributions to EPR parameters from the widely used crystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which are often neglected) are included. From the calculations, it is found that for the high valence state 3dn ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors) should take both the CF and CT mechanisms into account.  相似文献   

7.
8.
The complete diagonalization (of energy matrix) method (CDM) and the perturbation theory method (PTM) are applied to calculate the spin-Hamiltonian (SH) parameters (electron paramagnetic resonance g factors g //, g and zero-field splitting D) of the trigonal Mo 3+ centers in Y 3Al 5O 12 and Lu 3Al 5O 12 crystals. Both methods are based on the cluster approach in which the covalence effect due to the admixture between the d orbitals of central d n ion and p orbitals of ligands is considered. The g factors calculated by both methods are close to each other and agree with the experimental values. However, the calculated zero-field splittings D from PTM for both crystals are about 84% those from CDM. The reasons that the CDM is preferable to the PTM in the calculations of SH parameters are discussed. The angular distortions of Mo 3+ centers in both garnet crystals are predicted.  相似文献   

9.
The electron paramagnetic resonance g factors g//, g and also the optical band positions of the tetragonal (CrO6)7? octahedral clusters in glasses are calculated from the high-order perturbation formulas (in which the needed crystal-field (CF) energy levels correspond to the optical band positions). The formulas are founded on the two-mechanism model which takes account of both the contribution to g factors from the widely used CF mechanism and that from the frequently neglected charge-transfer (CT) mechanism. The calculated results are in rational agreement with the experimental values, suggesting that the contribution to g factors from CT mechanism should be considered. The local structure of (CrO6)7? clusters in glasses is also acquired from the calculation. The results are discussed.  相似文献   

10.
The EPR g factors for cubic, tetragonal and orthorhombic Fe centers in alkali halides MX (M = Li, Na;X = F, Cl) are calculated from second-order perturbation formulas of g factors based on cluster approach for 3d7 ions in three symmetries. From calculations, the g factors of these Fe centers in MX crystals are reasonably explained and the defect structural data for the tetragonal and orthorhombic Fe centers are estimated. The results are discussed.  相似文献   

11.
The EPR 9 factors for cubic, tetragonal and orthorhombic Fe^+ centers in alkali halides MX (M= Li, Na; X = F, CI) are calculated from second-order perturbation formulas of g factors based on cluster approach for 3d^7 ions in three symmetries. From calculations, the g factors of these Fe^+ centers in MX crystals are reasonably explained and the defect structural data for the tetragonal and orthorhombic Fe^+ centers are estimated. The results are discussed.  相似文献   

12.
The defect structures and the electron paramagnetic resonance parameters for the substitutional Mo5+ centers in rutile type SnO2, TiO2 and GeO2 crystals are theoretically investigated from the perturbation formulas of these parameters for a 4d1 ion in rhombically compressed octahedra. The [MoO6]7? clusters suffer the Jahn–Teller effect and transform the ligand octahedra from original elongation on host tetravalent sites to compression in the impurity centers, with additional smaller rhombic (perpendicular) distortions when compared with those in the hosts. The defect structures and the importance of the ligand contributions are discussed.  相似文献   

13.
W.C. Zheng  L. He  Y. Mei 《哲学杂志》2013,93(9):789-796
The spin-Hamiltonian (SH) parameters (g factors g //, g ⊥ and hyperfine structure constants 63 A //, 63 A ⊥, 65 A //, 65 A ⊥) for Cu2+ ions in the trigonally-distorted tetrahedral sites of ZnO and GaN crystals are calculated from a complete diagonalization (of energy matrix) method (CDM) based on a two spin-orbit parameter model for d 9 ions in trigonal symmetry. In the method, the Zeeman and hyperfine interaction terms are added to the Hamiltonian in the conventional CDM. The calculated results are in good agreement with the experimental values. The calculated SH parameters are also compared with those using the traditional diagonalization method or perturbation method only within the 2 T 2 term. It appears that, for exact calculations of SH parameters of d 9 ions in trigonal tetrahedral clusters in crystals, the present CDM is preferable to the traditional diagonalization method or perturbation method within the 2 T 2 term. The local structures of Cu2+ centers (which differ from the corresponding structure in the host crystal) in ZnO : Cu2+ and GaN : Cu2+ are obtained from the calculations. The results are discussed.  相似文献   

14.
15.
The spin-Hamiltonian parameters (g factors g, g and hyperfine structure constants 143A, 143A, 145A and 145A) of the tetragonal Nd3+ center in the low-temperature (T≈4.2 K) tetragonal phase of SrTiO3 are calculated from a diagonalization (of energy matrix) method. In the method, the Zeeman and hyperfine interaction terms are attached to the conventional Hamiltonian and a 52×52 energy matrix concerning the ground term 4HJ (J=9/2, 11/2, 13/2, 15/2) is constructed. The Nd3+ center is attributed to Nd3+ occupying the 12-fold coordinated Sr2+ site in SrTiO3. Differing from the defect model assumed in the previous paper that the tetragonal distortion of this Nd3+ center is due to the association of one interstitial oxygen ion at a nearest neighborhood of Nd3+ and the Nd3+ displacement Δz along C4 axis, we suggest that it is due to the distortion of SrTiO3 lattice in the tetragonal phase. The calculated g factors g and g show good agreement with the experimental values, suggesting that our defect model of Nd3+ center in SrTiO3 is reasonable. The experimental hyperfine structure constants were not reported and so our calculated results remain to be checked by EPR experiment.  相似文献   

16.

The EPR parameters (g factors g i and hyperfine structure constants A i , where i=x, y, z) of Ti3+ ion at the tetrahedral Si4+ site of beryl crystals are calculated within the rhombic symmetry approximation from the high-order perturbation formulas based on the two-spin-orbit (SO)-parameter model. In these formulas both the contribution due to the SO coupling parameter of the central 3d1 ion and that of ligand ions are considered. From the calculations, the defect structure of the Ti3+ defect center in beryl crystal is estimated and the EPR parameters g x , g y , g z and A y are reasonably explained. The values of the parameters A x and A z (which were not reported) are suggested and remain to be checked by the further experimental studies.  相似文献   

17.
The spin Hamiltonian parameters, g factors gi (i = x, y, z) and the hyperfine structure constants Ai for the interstitial Mo5+ centre in rutile TiO2 are quantitatively investigated from the perturbation formulas of these parameters for a 4d1 ion in rhombically compressed octahedra. From the studies, the local compression parameter τ′ (≈0.024) and the rhombic distortion angle δ?′ (≈1.74°) around the impurity Mo5+ are smaller than the host values (≈0.091 and 3.5°). This means that the oxygen octahedron in the impurity centre has less rhombic distortion than that on the host interstitial site due to the Jahn–Teller effect and occupation of the impurity. The above local lattice distortion of the studied impurity centre is also discussed.  相似文献   

18.
The g factors g‖,g⊥ and hyperfine structure constants A‖,A⊥ for two trigonal Co2+ centers (i.e.,Co2+ in Cd2+ (I) and Cd2+ (II) sites) in CsCdCl3:Co2+ crystals are calculated from the high-order perturbation formulas based on the cluster approach.In the calculation,the contributionsfrom covalency effect and configuration interaction effect are considered and the parameters related to both effects are obtained from the optical spectrum and the structure data of the studied system.The results are in good agreement with the observed values.  相似文献   

19.
The electron paramagnetic resonance (EPR) parameters (the anisotropic g factors, the hyperfine structure parameters and the quadrupole coupling constant Q) and local structure for Cu2+ in BeO are theoretically investigated from the perturbation formulas of these parameters for a 3d9 ion under trigonally distorted tetrahedra. The ligand orbital and spin-orbit coupling contributions are included in the basis of the cluster approach, in view of the strong covalency of the [CuO4]6? cluster. From the calculations, the impurity Cu2+ is suggested not to occupy exactly the ideal Be2+ site but to suffer a slight inward displacement (≈0.024 Å) toward the ligand triangle along the C3 axis. The theoretical EPR parameters show good agreement with the experimental data.  相似文献   

20.
The complete diagonalisation (of energy matrix) method is applied in this paper to calculate together the optical and electron paramagnetic resonance (EPR) spectral data for Cr3+ ion at the trigonal Ga3+ site of Y3Ga5O12 crystal. The method is founded on the two-spin-orbit-parameter model where in addition to the contributions from the spin-orbit parameter of central dn ion (i.e., one-spin-orbit-parameter model) in the traditional crystal field theory, those from the spin-orbit parameter of ligand ion via covalence effect is also considered. The calculated results propose that by using only four adjustable parameters, the 12 observed spectral data (nine optical band positions and three EPR parameters g//, g and D) in Y3Ga5O12: Cr3+ are reasonably explained. The impurity-induced local lattice distortion of Cr3+ in Y3Ga5O12 crystal is also estimated through the calculations. The results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号