首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The density functional method with the relativistic effective core potential has been employed to investigate systematically the geometric structures, relative stabilities, growth-pattern behavior, and electronic properties of small bimetallic Au n Rb (n?=?1–10) and pure gold Au n (n?≤?11) clusters. For the geometric structures of the Au n Rb (n?=?1–10) clusters, the dominant growth pattern is for a Rb-substituted Au n +1 cluster or one Au atom capped on a Au n –1Rb cluster, and the turnover point from a two-dimensional to a three-dimensional structure occurs at n?=?4. Moreover, the stability of the ground-state structures of these clusters has been examined via an analysis of the average atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of cluster size. The results exhibit a pronounced even–odd alternation phenomenon. The same pronounced even–odd alternations are found for the HOMO–LUMO gap, VIPs, VEAs, and the chemical hardness. In addition, about one electron charge transfers from the Au n host to the Rb atom in each corresponding Au n Rb cluster.  相似文献   

2.
All-electron scalar relativistic calculations on Au5X (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) clusters have been performed by using density functional theory with the generalized gradient approximation. Our calculation results indicate that all the lowest energy geometries of Au5X clusters have planar structures; the doped X atoms prefer to occupy the fourfold coordination site. Except Au5Fe, Au5Co and Au5Zn, for other clusters including pure Au6 cluster, the HOMO are delocalized obviously with a contribution from all atoms in the cluster. On the contrary, the electron localization in Au5Zn is very strong resulting in the least stability of this cluster. Au5Cu cluster with six delocalized electrons being defined as magic number for two-dimensional system has the largest VIP and deepest HOMO energy level. With the substitution Au for X atoms, the metallicity of all Au5X clusters is reinforced.  相似文献   

3.
Density-functional method PW91 has been selected to investigate the structural, electronic and magnetic properties of Au4M (M =Sc–Zn) clusters. Geometry optimisations show that the M atoms in the ground-state Au4M clusters favour the most highly coordinated position. The ground-state Au4M clusters possess a solid structure for M = Sc and Ti and a planar structure for M = V–Zn. The characteristic frequency of the doped clusters is much greater than that of pure gold cluster. The relative stability and chemical activity are analysed by means of the averaged binding energy and highest occupied molecular orbital and lowest unoccupied molecular orbital energy gap for the lowest energy Au4M clusters. It is found that the dopant atoms can enhance the thermal stability of the host cluster except for Zn atom. The Au4Ti, Au4Mn and Au4Zn clusters have relatively higher chemical stability. The vertical detachment energy, electron affinity and photoelectron spectrum are calculated and simulated theoretically for all the ground-state structures. The magnetism calculations reveal that the total magnetic moment of Au4M cluster is mainly localised on the M atom and vary from 0 to 5 μB by substituting an Au atom in Au5 cluster with different transition-metal atoms.  相似文献   

4.
The ab initio method based on density functional theory at the B3PW91 level has been applied to study the geometric, electronic, and magnetic properties of neutral and anionic Au n Pd (n?=?1–9) clusters. The results show that the most stable geometric structures adopt a three-dimensional structure for neutral Au7Pd and Au8Pd clusters, but for anionic clusters, no three-dimensional lowest-energy structures were obtained. The relative stabilities of neutral and anionic Au n Pd clusters were analysed by means of the dependent relationships between the binding energies per atom, the dissociation energies, the second-order difference of energies, the HOMO–LUMO energy gaps and the cluster size n, and a local odd–even alternation phenomenon was found. Natural population analysis indicates the sequential transfer from the Pd atom to the Au n frame in Au1,2,3,5Pd and Au2,3Pd? clusters, and from the Au n frame to the Pd atom in other clusters. Much to our surprise, irrespective of whether it is the total magnetic moment or the local magnetic moment, the magnetic moment presents an odd–even alternation phenomenon as a function of the cluster size n. The magnetic effects are mainly localized on the various atoms (Au or Pd) for different cluster size n.  相似文献   

5.
In this paper, we investigate the electronic and magnetic properties of Cu-doped nickel clusters by means of density functional theory. The stabilities of these clusters have also been studied in terms of the binding energies, second-order difference of energies, fragmentation energies and HOMO–LUMO energy gaps. The obtained results reveal that the N4Cu, N5Cu and Ni7Cu clusters are found to be more stable that than all other clusters. Higher HOMO–LUMO gap was observed for Ni5Cu cluster (2.265 eV), indicating its higher chemical stability. A half-metallic behaviour has also been observed for the NinCu clusters, which suggests that these clusters can be employed as nanocatalysts for several catalytic processes, particularly for hydrogenation and dehydrogenation reactions. The magnetism calculations show that the magnetic moment is mostly located on the Ni atoms, and the contribution of the Cu atom to the total magnetic moment in the NinCu clusters is very small. Furthermore, partial density of states analysis indicates that the 3d orbitals in Ni atoms are mostly responsible for the magnetic behaviour of these clusters, and the s orbitals have a very little contribution to the total magnetic moment.  相似文献   

6.
ABSTRACT

The adsorption of phosgene (COCl2) on pristine, Al- and Si-doped boron nitride nanoflakes (BNNFs) is studied using density functional theory calculations. The adsorption energies of the most stable complexes, formed from interaction between COCl2 and the pristine, Al- and Si-doped BNNFs are ?28.97, ?78.71 and ?171.60?kJ/mol at the M06-2X/6-31?+?G* level of theory, respectively. It is found that COCl2 experiences a chemisorption interaction over the doped BNNFs, significantly altering its structure with respect to the gas-phase molecule. The COCl2 adsorption can also induce a change in the HOMO–LUMO or SOMO–LUMO energy gap of the surface. In particular, the adsorption of COCl2 is found to decrease the HOMO–LUMO energy gap of Al-doped BNNF by about 30%. It is suggested that the Al- or Si-doped BNNFs can be considered as a potential material for detecting toxic COCl2.  相似文献   

7.
Using full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have investigated the dependence of GaAs clusters with eight atoms on composition. It is found that the ground state structures for Ga-rich and As-rich clusters are cube structures. As the ratio between gallium atoms and arsenic atoms is close to one, structural distortion become increasingly severe, or even the clusters adopt other geometrical configurations as their ground state structures. The energy gap Eg between the highest-occupied molecular orbital (HOMO) and the lowest-unoccupied molecular orbital (LUMO), and the vertical electron affinity show a certain degree of even/odd alternation with cluster composition. Among nine Ga8−nAsn (n=0-8) clusters, only a few of clusters have different energy orders between the ionic and neutral isomers with large binding energy. Some ionic structures would change into other configurations due to severe structural distortion.  相似文献   

8.
ABSTRACT

Density functional theory calculations have been carried out on ternary PtmAunAgl clusters of low nuclearity (m?+?n+l?=?5, 6 and 7). Various properties including average bond distance, binding energy, mixing energy, ionisation potential, electron affinity, HOMO–LUMO gap and fragmental channel, are reported for the optimised structures. The variations of the calculated properties of the PtmAunAgl clusters as a function of concentrations (i.e. all m-, n-, and l-values) are displayed by ternary diagrams. The geometric, energetic and electronic properties are sensitive to the composition and size of PtmAunAgl clusters.  相似文献   

9.
The geometrical structures, relative stabilities, electronic and magnetic properties of small PdnIr (n = 1–8) clusters have been systematically investigated using density functional theory at the B3PW91 level. The optimised geometries show that the lowest-energy structures of PdnIr clusters prefer a three-dimensional configuration. The relative stability of these clusters was examined by analysis of the binding energies per atom, fragmentation energies, the second-order difference of energies and the HOMO–LUMO energy gaps as a function of cluster size. The obtained results exhibit that the Pd2Ir, Pd3Ir and Pd5Ir clusters are more stable than their neighbouring clusters. The energy gap of the Pd2Ir cluster is the largest of all the clusters (2.258 eV). In addition, the charge transfers, vertical ionisation potentials, vertical electron affinities and chemical hardness were calculated and discussed. The magnetism calculations indicate that the total magnetic moment of PdnIr clusters is mainly localised on the iridium atom for Pd1–6Ir clusters. Meanwhile, the 5d orbital plays the key role in the magnetic moment of the iridium atom.  相似文献   

10.
We present the first high-resolution X-ray photoelectron core level spectra of bulk copper hexadecafluoro phthalocyanine (CuFPC) and naphthalocyanine (H2NPC). The measurements have been performed in UHV onto samples grown in situ. A shake-up satellite assigned to a monopole on-site HOMO–LUMO molecular excitation has been evidenced in the F, C and N core-level spectra measured. In the case of the CuFPC, the shake-up is characteristic of the F atoms, of the four N atoms that are Cu bonded, and of the F- and N-bonded C atoms. The shake-up to main peak relative binding energy has been estimated to be 1.6 eV. In the case of H2NPC, the outer benzenic C atoms do not show a satellite excitation, which instead is characteristic of the C and N atoms belonging to the inner porphyrin-like central ring of the molecule. The shake-up is less than 1 eV at higher binding energies from the main core line. The localisation of the HOMO level in the central structure of the molecule is confirmed by Hartree–Fock all-electron molecular orbital calculations performed on the metal-free phthalocyanine (H2PC) and hexadecafluoro phthalocyanine (H2FPC) molecules.  相似文献   

11.
陈国栋  王六定  安博  杨敏 《物理学报》2009,58(13):254-S258
对闭口硼氮纳米管(BNNT)顶层掺碳体系,运用第一性原理研究了电子场发射性能.结果表明,掺碳的BNNT体系电子结构变化显著;外电场愈强,体系态密度向低能端移动幅度愈大,且最高占据分子轨道(HOMO)/最低未占据分子轨道(LUMO)能隙愈小.体系态密度和局域态密度,HOMO和LUMO及其能隙分析一致表明,各种碳掺杂体系中CeqBNNT的场发射性能最佳. 关键词: 硼氮纳米管 碳掺杂 第一性原理  相似文献   

12.
采用密度泛函理论中的广义梯度近似(generalized gradient approximation,简称GGA),对内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构进行了计算研究.发现无论是在H2@C60单体,还是在其二聚体中,氢倾向以分子形式存在于碳笼中心处,且在室温下氢分子可以做自由旋转.电子结构分析表明,氢分子掺入到C60和C120中,仅对距离费米能级以下-8eV至-5eV能级处有一定的贡献,其他能级的分布和能隙几乎没有变化. 关键词: 几何结构 电子结构 密度泛函  相似文献   

13.
ABSTRACT

The lowest energy structure of Li15 cluster is a capped double centred square antiprism sharing a square face. Interestingly, when a lithium atom is substituted by a transition-metal atom TM (TM?=?Sc, Ti, V, Y, Zr, Nb, Hf, Ta and W), the lowest energy structure is found to be cage-like with a D6d symmetry, where the outer cage is composed by fourteen lithium atoms with an endohedral transition-metal atom. The unique structures are confirmed by CALYSPO structure prediction method code and density-functional theory calculations. Superatomic properties are confirmed in all the D6d clusters. Energy calculations predict that they are very stable, and their stability is further enhanced by the large gaps of the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO–LUMO gaps). Our findings offer potential applications in building blocks for assembling materials with superatoms.  相似文献   

14.
The electronic and structural properties of Ti9XO20 (X=Ti, C, Si, Ge, Sn and Pb) clusters have been obtained in the density functional theory (DFT) framework. The changes in the bond length, binding energy, frontier orbitals, and electronic potential have been fully analyzed when one titanium atom in the (TiO2)10 cluster is replaced by elements with four valence electrons. When one titanium atom is substituted by one carbon atom, a charge excess among the guest and the surrounding oxygen atoms is generated, which is approximately 1.5 times that of the pristine case, and this structure has been shown to be the most stable among the studied systems. In addition, the Ti10O20–Cd2 and Ti9CO20–Cd2 clusters exhibit HOMO–LUMO gaps that have decreased by 0.58 and 2.12 eV, respectively, with respect to the bare cases.  相似文献   

15.
The geometrical, electronic, and magnetic properties of small CunFe (n=1–12) clusters have been investigated by using density functional method B3LYP and LanL2DZ basis set. The structural search reveals that Fe atoms in low-energy CunFe isomers tend to occupy the position with the maximum coordination number. The ground state CunFe clusters possess planar structure for n=2–5 and three-dimensional (3D) structure for n=6–12. The electronic properties of CunFe clusters are analyzed through the averaged binding energy, the second-order energy difference and HOMO–LUMO energy gap. It is found that the magic numbers of stability are 1, 3, 7 and 9 for the ground state CunFe clusters. The energy gap of Fe-encapsulated cage clusters is smaller than that of other configurations. The Cu5Fe and Cu7Fe clusters have a very large energy gap (>2.4 eV). The vertical ionization potential (VIP), electron affinity (EA) and photoelectron spectra are also calculated and simulated theoretically for all the ground-state clusters. The magnetic moment analyses for the ground-state CunFe clusters show that Fe atom can enhance the magnetic moment of the host cluster and carries most of the total magnetic moment.  相似文献   

16.
The geometries and electronic properties of the 3p electrons atoms doped gold cluster: M@Au6 clusters (M=Al, Si, P, S, Cl, Ar) have been systematically investigated by using relativistic all-electron density functional theory (VPSR) and scalar relativistic effective core potential Stuttgart/Dresden (SDD) basis. Generalized gradient approximation in the Perdue-Burke-Ernzerhof (PBE) functional form is chosen for geometry optimization. A number of new isomers are obtained for neutral M@Au6 clusters. Both PBE/VPSR and PBE/SDD methods give similar lowest energy structure of each M@Au6cluster. With the exception of Ar@Au6, all doped clusters show larger relative binding energies compared with pure Au7 cluster. It is found that all the ground-state structures of the M@Au6 clusters prefer the low symmetry structures, which is very different to the 3d transition-metal impurity doped Au6 clusters. Our results are in excellent agreement with available experiment data.  相似文献   

17.
The structural and electronic properties of MAu19 and M2Au18 (M = Cu and Na) have been studied by the relativistic density-functional calculations. It is found that the most stable configurations of CuAu19 and Cu2Au18 are the face-centered and two-face-centered doped structures based upon the tetrahedral structure Au20. In contrast, the ground states of Na-doped gold clusters (NaAu19 and Na2Au18) exhibit flat-cage configurations. The PES of these ground states are depicted that may be helpful to identify their configurations in the future experiments. The face-centered and two-face-centered doped tetrahedral structures of CuAu19 and Cu2Au18 have a large HOMO–LUMO gap, indicating that they are chemically stable.  相似文献   

18.
The vibrational and electronic properties of a new class of organometallic sandwich molecules, (C6)nMen‐1, based on stacks of cyclic C6 intercalated with Fe and Ru have been studied using first principles density functional techniques (DFT). Spectral properties as well as the HOMO‐LUMO gap energy in molecules containing up to eight C6 layers have been calculated. The HOMO‐LUMO energy gap in these molecules is < 1 eV and decreases significantly in longer molecules. It is shown that infinite chains should have excellent metallic properties. These molecules are promising for nanoelectronic applications, due to their predicted high stability, conductivity, and magnetic properties.  相似文献   

19.
The structural, electronic and magnetic properties of small gallium clusters doped with Cobalt have been studied using spin-polarised density functional theory. The binding energy per atom, second-order differences of total energies and fragmentation energies of equilibrium geometries of the host Gan+1 and doped GanCo (n = 1–12) clusters are computed. Doped clusters are found to be more stable than pure Ga clusters; Ga3Co, Ga5Co and Ga8Co clusters are exceptionally stable. Doping with Co changes the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO–LUMO) gap, and also affects the magnetic moments of clusters.  相似文献   

20.
利用密度泛函理论通过计算吸附能量、HOMO/LUMO能隙变化、电荷转移、结构扭曲等研究二氧化氮分子在B12N12纳米笼的吸附.此外,通过计算B12N12的电子结合能、Gibbs自由能、态密度和分子表面的静电势研究其稳定性和其它特性.B12N12纳米笼吸附二氧化氮显示三种构型.B12N12团簇的HOMO/LUMO能隙变化对二氧化氮分子的存在非常敏感,从自由团簇的6.84 eV降为NO2/团簇稳定团簇的3.23 eV.团簇的导电性被极大地提高,表明B12N12纳米簇可能是潜在的二氧化氮气体分子检测传感器.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号