首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The solvation force of the water-like fluid models with square-well attraction and site–site chemical association confined to slit-like pores has been explored. Theoretical procedure is based on the application of the density functional approach with mean-field approximation for the attractive interparticle interactions. The chemical association effects are treated by using the first-order thermodynamic perturbation theory of Wertheim. Trends of behaviour of the solvation force are put in correspondence with the distribution of molecules in the pores and with the average density of the adsorbate. Moreover, the distribution of non-bonded species on pore width is described. The influence of the width of the square-well and of the gas–solid attraction is discussed. A comparison of theoretical predictions with computer simulations results for water models in slit-like pores is performed.  相似文献   

2.
A fluid of hard spheres confined between two hard walls and in equilibrium with a bulk hard-sphere fluid is studied using a second-order Percus-Yevick approximation. We refer to this approximation as second-order because the correlations that are calculated depend upon the position of two hard spheres in the confined fluid. However, because the correlation functions depend upon the positions of four particles (two hard spheres and two walls treated as giant hard spheres), this is the most demanding application of the second-order theory that has been attempted. When the two walls are far apart, this calculation reduces to our earlier second-order approximation calculations of the properties of hard spheres near a single hard wall. Our earlier calculations showed this approach to be accurate for the single-wall case. In this work we calculate the density profiles and the pressure of the hard-sphere fluid on the walls. We find, by comparison with grand canonical Monte Carlo results, that the second-order approximation is very accurate, even when the two walls have a small separation. We compare with a singlet approximation (in the sense that correlation functions that depend on the position of only one hard sphere are considered). The singlet approach is fairly satisfactory when the two walls are far apart but becomes unsatisfactory when the two walls have a small separation. We also examine a simple theory of the pressure of the confined hard spheres, based on the usual Percus-Yevick theory of hard-sphere mixtures. Given the simplicity of the latter approach the results of this simple (and explicit) theory are surprisingly good.  相似文献   

3.
Xueqian Chen  Wei Feng  Ying Hu 《Molecular physics》2016,114(16-17):2541-2547
ABSTRACT

In this paper, Lafuente and Cuesta's cluster density functional theory (CDFT) and lattice mean field approximation (LMFA) are formulated and compared within the framework of lattice density functional theory (LDFT). As a comparison, an LDFT based on our previous work on nonrandom correction to LMFA is also developed, where local density approximation is adopted on the correction. The numerical results of density distributions of an Ising fluid confined in a slit pore obtained from Monte Carlo simulation are used to check these functional approximations. Due to rational treatment on the coupling between site-excluding entropic effect and contact-attracting enthalpic effect by CDFT with Bethe-Peierls approximation (named as BPA-CDFT for short), the improvement of BPA-CDFT beyond LMFA is checked as expected. And it is interesting that our LDFT has a comparative accuracy with BPA-CDFT. Apparent differences between the profiles such as solvation force, excess adsorption quantity and interfacial tension from LMFA and non-LMFAs are found in our calculations. We also discuss some possible theoretical extensions of BPA-CDFT.  相似文献   

4.
叶贞成  蔡钧  张书令  刘洪来  胡英 《物理学报》2005,54(9):4044-4052
应用Yethiraj的加权密度近似泛函理论研究平板狭缝中方阱链流体的密度分布,系统的Helm holtz自由能泛函分为理想气体的贡献利剩余贡献两部分,其中剩余贡献部分分别采用刘洪 来等人建立的基于空穴相关函数的方阱链流体状态方程和Gil-Villegas等人提出的统计缔合 流体理论状态方程(SAFT-VR)结合简单加权密度近似计算.考察了不同链长、温度、系统密度 和壁面吸引强度下平板狭缝中方阱链流体的密度分布,并与Monte Carlo(MC)模拟结果进行 了比较.结果表明采用不同的状态方程对密度分布的计算有明显的影响,对于受限于硬壁狭 缝中的方阱链流体,温度和密度比较高时,两种状态方程计算的结果均与MC模拟符合得比较 好,在低温和低密度下效果变差,SAFT-VR方程的计算结果更接近于MC模拟结果.对于受限于 方阱壁狭缝中的方阱链流体,由于系统密度分布的非均匀性加强,采用两种状态方程计算的 结果均与MC模拟结果有一定偏差,寻找更合适的权重函数是进一步改进的关键. 关键词: 密度泛函理论 非均匀流体 密度分布 固液界面 方阱链  相似文献   

5.
Fourier transform infrared and Raman spectra of 2,3-pyrazinedicarboxylic acid were recorded and analyzed using density functional theory. The complete assignments of the anharmonic vibrational modes have been performed based on potential energy distribution. The anharmonic frequencies were computed using vibrational second-order perturbation theory as well as vibrational self-consistent field and correlation corrected vibrational self-consistent field methods. Mode–mode coupling strength is also estimated using two-mode representation of quartic force field approximation. The intra- and intermolecular interactions were also studied in the dimer and trimer forms of the title molecule. The ultraviolet–visible absorption spectra in ethanol, methanol, and acetonitrile solvents were recorded and analyzed using time-dependent density functional theory involving the polarization continuum model. The observed and calculated results are well comparable. Molecular electrostatic potential and the highest occupied and the lowest unoccupied molecular orbital analyses are also reported.  相似文献   

6.
Local density profiles in a Lennard-Jones adsorption layer, corresponding to molecular hydrogen in the two-dimensional continuum, which simulates graphene have been calculated using the density functional method (approximation with weight multipliers). In addition to this, the density distribution and absolute adsorption in the plane-parallel pore of a graphite adsorbent have been calculated. It has been found that a certain characteristic width of the pore exists starting from which the density profiles correspond to profiles in two separate graphene layers. At a lesser pore width the force fields from the pore walls overlap which leads to a change in the density profile patterns. It has also shown that porous graphites with a pore width corresponding to five to six removed graphenes are the most optimal for hydrogen storage. The determined absolute adsorption values are in agreement with the results of independent thermodynamic calculations.  相似文献   

7.
We present two new perturbation density functional theories to investigate non-uniform fluids of associating molecules. Each fluid molecule is modelled as a spherical hard core with four highly anisotropic square well sites placed in tetrahedral symmetry on the hard core surface. In one theory we apply the weighting from Tarazona's hard sphere density functional theory to Wertheim's bulk first-order perturbation theory. The other theory uses the inhomogeneous form of Wertheim's theory as a perturbation to Tarazona's hard-sphere density functional theory. Each theory approaches Tarazona's theory in the limit of zero association. We compare results from theory and simulation for density profiles, fraction of monomers, and adsorption of an associating fluid against a hard, smooth wall over a range of temperatures and densities. The non-uniform fluid theory which uses Tarazona's weighting of Wertheim's theory in the bulk is in good agreement with computer simulation results.  相似文献   

8.
Grand canonical Monte Carlo simulations were applied to the adsorption of SPCE model water in finite graphitic pores with different configurations of carbonyl functional groups on only one surface and several pore sizes. It was found that almost all finite pores studied exhibit capillary condensation behaviour preceded by adsorption around the functional groups. Desorption showed the reverse transitions from a filled to a near empty pore resulting in a clear hysteresis loop in all pores except for some of the configurations of the 1.0?nm pore. Carbonyl configurations had a strong effect on the filling pressure of all pores except, in some cases, in 1.0?nm pores. A decrease in carbonyl neighbour density would result in a higher filling pressure. The emptying pressure was negligibly affected by the configuration of functional groups. Both the filling and emptying pressures increased with increasing pore size but the effect on the emptying pressure was much less. At pressures lower than the pore filling pressure, the adsorption of water was shown to have an extremely strong dependence on the neighbour density with adsorption changing from Type IV to Type III to linear as the neighbour density decreased. The isosteric heat was also calculated for these configurations to reveal its strong dependence on the neighbour density. These results were compared with literature experimental results for water and carbon black and found to qualitatively agree.  相似文献   

9.
Yanshuang Kang 《中国物理 B》2022,31(5):56104-056104
Based on the free-energy average method, an area-weighted effective potential is derived for rectangular corrugated nano-pore. With the obtained potential, classical density functional theory is employed to investigate the structural and thermodynamic properties of confined Lennard-Jones fluid in rectangular corrugated slit pores. Firstly, influence of pore geometry on the adsorptive potential is calculated and analyzed. Further, thermodynamic properties including excess adsorption, solvation force, surface free energy and thermodynamic response functions are systematically investigated. It is found that pore geometry can largely modulate the structure of the confined fluids, which in turn influences other thermodynamic properties. In addition, the results show that different geometric elements have different influences on the confined fluids. The work provides an effective route to investigate the effect of roughness on confined fluids. It is expected to shed light on further understanding about interfacial phenomena near rough walls, and then provide useful clues for the design and characterization of novel materials.  相似文献   

10.
A method of characterization of carbonaceous materials using nongraphitized carbon black as a reference is considered. The Tarazona density functional theory was applied to amorphous solids to describe nitrogen adsorption on nongraphitized carbon black. This allows us to describe energetic heterogeneity without the need to invoke any energy distribution functions. To derive the pore size distribution (PSD) of porous carbon whose pore walls are non-graphitized, we used the entropy concept in the regularization method. With this approach PSD is more well-behaved than that obtained with the usual means. We applied this new theory to study the effects of technological parameters on porous structure of a series of activated carbon.  相似文献   

11.
A study is reported of adsorption of an associating Lennard-Jones fluid with four associative sites per molecule in a slit-like pore. The density distribution of particles in the pore and thermodynamics properties are evaluated by using a density functional method. It is found that at low temperatures the fluid exhibits a set of layering transitions, followed by capillary condensation. Transitions are localized by analysing the grand canonical potential. The density profiles of particles and the distribution of unbound and differently bonded particles demonstrate changes in the structure of the fluid in the pore along the phase coexistence. The critical temperature is lower for a confined fluid, compared with the bulk counterpart. However, an increase in the energy of association increases the critical temperature. The envelope of the capillary condensation is narrower than the bulk liquid-vapour phase diagram. The dependence of the solvation force on the energy of association and on the bulk density is discussed.  相似文献   

12.
Based on the method proposed by Zong et al.,we calculate the equation of state(EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop(HDL) approximation.A comparison between the EOS under HDL approximation and the cold,perturbative EOS of QCD proposed by Fraga,Pisarski and Schaffner-Bielich is made.It is found that when μ is less than 4.7 GeV,the pressure density calculated using HDL approximation is much larger than that calculated using pertur-bation theory.This enha...  相似文献   

13.
It is shown that the simple Onsager second-virial approximation of density functional theory can successfully describe the orientational structure of a Gay-Berne film confined between aligning plates. The theory takes as input the density profile as determined by computer simulation and semi-quantitatively reproduces the variation in the nematic order parameter throughout the film, at different temperatures and for different surface potential strengths, without any adjustable parameters. In this context the validity of an earlier analytical approach is discussed where the density, order parameter and tilt angle profiles were assumed to be step functions.  相似文献   

14.
We have studied a model of a hard sphere fluid adsorbed in a cylindrical pore filled with quenched disordered matrix of hard sphere particles using Grand canonical Monte Carlo simulations. The interactions between matrix species and pore walls are assumed of a hard sphere type. However, the pore walls exert a short-range attraction upon adsorbed fluid particles. We discuss the adsorption isotherms and the density profiles of fluid particles in pores with different microporosity for several values of the pore radius. We have observed that like in homogeneous microporous media the adsorption increases with increasing porosity. However, trends of behavior of the isotherms also reflect layering of adsorbed fluid. The data obtained in this study may serve as a benchmark for the development of the theory of confined quenched-annealed systems and for computer simulation investigation of models permitting phase transitions in pores. This project has been supported in parts by DGAPA of the UNAM under research grant IN111597, by the National Council for Science and Technology (CONACyT), grant No. 25301-E.  相似文献   

15.
The Schrödinger equation is solved for a particle confined within the ellipsoidal potential well using the perturbation theory and the Hamiltonian diagonalization method. The explicit expressions are obtained for the energy levels that are size and shape dependent and appropriate wave functions. The calculated energy levels are in a good qualitative and quantitative agreement with the result obtained by numerical solution of the Schrödinger equation. It is revealed that for the lowest states of a given symmetry the region of validity of the perturbation approximation is much larger than it follows from the usual condition of applicability of the perturbation theory. The optical properties of nanoparticles of a prolate and oblate ellipsoidal shape are discussed.  相似文献   

16.
Weighted-density approximations (WDAs), which are based on the weighting function for the second-order direct correlation functions (DCFs) of the uniform polymeric fluids, have been developed to investigate the structural and thermodynamic properties of polymer melts at interfaces. The advantage is the simplicity of calculation of the weighting functions and their accuracies in the applications. They were applied to study the local density distributions and adsorption isotherms of the freely jointed tangent hard-sphere chain, Yukawa chain, and hard-sphere chain mixture in slit pores. The polymer reference interaction model (PRISM) integral equation with the Percus–Yevick (PY) closure has been used to calculate the second-order DCF of the polymeric fluids required as inputs. The mean-field approximation (MFA) has been used to calculate the weighting function for the attractive contribution of a freely jointed tangent Yukawa chain fluid, having attraction among the beads. The calculated results show that (i) for the freely jointed tangent hard-sphere chain, the present theory is in excellent agreement with the computer simulations over a wide range of chain lengths and bulk densities, (ii) the WDA approach for the attraction provides an accurate method for the local density distributions of a freely jointed tangent Yukawa chain fluid, and that (iii) the present theory also yields a reasonably good result for the structural properties of the freely jointed hard-sphere chain mixtures composed of the chain and monomer.  相似文献   

17.
First principles study of barium chalcogenides   总被引:1,自引:0,他引:1  
In this study, ab initio calculation results of the vibrational properties and elastic parameters as well as characteristic Debye temperature and Poisson's ratios of two barium chalcogenides, BaSe and BaS, which crystallize in NaCl-type structure, were presented. Calculations were based on plane wave basis sets together with ultrasoft pseudopotentials in the framework of density functional theory (DFT) with generalized gradient approximation. Phonon dispersion spectra were obtained using the first principles linear response approach of the density functional perturbation theory (DFPT). The detailed total energy calculations were performed in order to obtain elastic constants using distortions on cubic phase. The calculated structural, elastic, and thermal parameters of BaSe and BaS systems agree well with the available experimental data and theoretical calculations.  相似文献   

18.
A density functional approach is used to study the adsorption and phase behaviour of a Lennard-Jones (LJ) fluid in slit-like pores with energetically heterogeneous walls, investigating how the randomly varying part of the fluid-solid potential imposed on a periodic ‘back-ground’ potential modifies the phase behaviour of the confined fluid. Non-local density functional theory is employed to describe the system. To study the system with a random external field, the method used is based on investigations of several replicas of the system and on averaging the final thermodynamic results over the replicas.  相似文献   

19.
Ab initio calculations, based on norm-conserving non-local pseudopotentials and the density functional theory (DFT), have been performed to investigate the behaviour under hydrostatic pressure of the structural, electronic, elastic and dynamical properties of AlP, in both zinc-blende and nickel arsenide phases. Our calculated structural and electronic properties are in good agreement with previous theoretical and experimental results. The phonon dispersion curves, the elastic constants, Born effective charge, etc., were calculated with the local density approximation and the density functional perturbation theory (DFPT). Our results in the pressure behaviour of the elastic and dynamical properties of both phases are in agreement with the experimental data when available, in other case they can be considered as predictions.  相似文献   

20.
Adsorption of simple organic and inorganic molecules on an amorphized silica gel surface is studied within the framework of density functional theory in the approximation of periodic crystalline slabs. Adsorption of water, ammonia, acetone, and ethanol molecules is examined. Most probable adsorption sites of molecules on the surface are calculated and the adsorption energies and bond lengths of molecules on the silica gel surface are estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号