首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geometrical structure, vibration spectra, and enthalpies of dissociation have been investigated for the ions BaCl3?, Ba2Cl3+, Ba3Cl5+, and Ba4Cl7+ which were detected earlier in the saturated vapour over BaCl2. Quantum chemical methods of density functional theory, the second and the fourth order Møller–Plesset perturbation theory have been applied. The effective core potential with cc-pVTZ basis set for barium atom and two full-electron basis sets including the diffuse and polarised basis functions for chlorine atom were used. The effect of the basis set size and the computation method on the results was analysed. According to the results, all the ions possess the compact shaped structure. The equilibrium geometrical structures were found as follows: the planar D3h for BaCl3?, triple bridged bipyramidal D3h for Ba2Cl3+, hexabridged D3h for Ba3Cl5+, and septuple bridged C2v for Ba4Cl7+. For positive ions, the different isomeric structures were considered, but no isomers for these ions have been found. The geometrical parameters and vibration frequencies were utilised for computing of thermodynamic functions of the ions, and then the thermodynamic functions were used for the treatment of the experimental mass spectrometric data. The enthalpies of formation ΔfH°(0 K) of the ions were determined (in kJ/mol): ?994 ± 6 (BaCl3?), ?481 ± 10 (Ba2Cl3+), ?1276 ± 14 (Ba3Cl5+), ?2048 ± 35 (Ba4Cl7+).  相似文献   

2.
The new organic‐inorganic salt, 2‐amino‐5‐chloropyridinium hydrogen selenate, has been synthesised and characterised by means of FT‐IR, FT‐Raman and single crystal X‐ray crystallography. Its vibrational spectra have been discussed on the basis of quantum chemical DFT calculations using the B3LYP/6‐31G(d,p) approach. The crystal and molecular structures have been compared and the role of the intermolecular interactions in this crystal has been analysed. The N HO interactions between the hydrogen atoms of the organic cation and oxygen atoms of hydrogen selenate anion determine the supramolecular arrangement in three‐dimensional space. The possible application of the studied composite material as a Raman laser has been discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Geometric, electronic and vibrational properties of the most stable and energetically favourable configurations of indium oxide clusters InmOn (1≤m, n4) are investigated using density functional theory. The lowest energy geometries prefer the planar arrangement of the constituent atoms with a trend to maximize the number of ionic In-O bonds. Due to the charge transfer from In to O atoms, the electrostatic repulsion occurs between the atoms with the same kind of charge. The minimization of electrostatic repulsion and the maximization of In-O bond number compete between each other and determine the location of the isometric total energy. The most stable linear In-O-In-O structure of In2O2 cluster is attributed to the reduced electrostatic repulsive energy at the expense of In-O bond number, while the lowest energy rhombus-like structure of In2O3 cluster reflects the maximized number of In-O bonds. Furthermore, the vibrational frequencies of the lowest energy clusters are calculated and compared with the available experimental results. The energy gap and the charge density distribution for clusters with varying oxygen/indium ratio are also discussed.  相似文献   

4.
A new organic–organic salt, 2‐aminopyridinium‐4‐hydroxybenzenosulfonate, has been synthesised and characterised by means of FT‐IR and FT‐Raman spectroscopies, differential scanning calorimetry (DSC) and single crystal X‐ray crystallography. Its vibrational spectra have been discussed on the basis of quantum chemical density functional theory (DFT) calculations using the B3LYP/6‐31G(d,p) approach. The role of the intermolecular interactions in this crystal is analysed. The N HċċċO interactions between the hydrogen atoms of the pyridinium cation and oxygen atoms of hydroxybenzenosulfonate anion built the supramolecular arrangement in three‐dimensional space. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
We use time-dependent density functional theory coupled to molecular dynamics for ionic motion to compute the spectra of ionic vibrations in small Na clusters. Comparison with results from the distance dependent tight-binding approach shows good agreement between these two very different methods. We discuss the evolution of the spectra with cluster size and charge and the impact of ionic vibrations on the optical response. Received 23 July 2001 / Received in final form 5 July 2002 Published online 8 October 2002 RID="a" ID="a"e-mail: suraud@irsamc.ups-tlse.fr  相似文献   

6.
Optimized structures and cohesive energies of small mercury clusters (HgN; N = 3–7, 13, 19) are calculated with the spin-orbit diatomics-in-molecules method. The theory takes into account the effect of s-p mixing which tends to enhance the binding energies in the ground state. It is shown that excimer clusters have significantly short optimum bond lengths and their atomic geometries differ considerably from those in the ground state. Excitation energy gap depends sensitively on both cluster size and nearest-neighbor separation. Numerical results are compared with other theories and experiments.  相似文献   

7.
8.
在从头算层次上采用自洽场Hartree -Fock(SCF -HF)与密度泛函理论 (DFT)的定域自旋密度泛函SVWN和杂化泛函B3LYP方法以及 6 - 31 G(d)基组 ,计算优化了Se7环chair和boat两种分子构型。以B3LYP/ 6 - 31 G(d)优化的结构为基础 ,计算了Se7环两种构型的红外振动光谱 ,标定了这两种构型的各个简谐振动模式的对称性。计算结果与前人的理论、实验数据进行了比较。  相似文献   

9.
Two protonated forms of chlorine nitrate, HClONO+ 2 and ClONO2H+, are treated ab initio by the Hartree-Fock and the second order Møller-Plesset perturbation approach with the standard 6–31G* basis set. Both minimum energy structures are planar (C 3 symmetry) and their structural, energy, and vibrational parameters are reported. The computations conclude that the proton attacks the chlorine nitrate at its central, not end, oxygen atom. The protonation causes a considerable elongation of the central ON bond which becomes most probable place of cleavage. The dissociation should yield the neutral HOCl and NO+ 2. These quantum-chemical findings well agree with the previous experimental indications.

  相似文献   

10.
A study of the different operation modes of a sputtering gas-aggregation source is presented. The size distributions of small cobalt clusters shed some light on the first steps of the growth process. Large clusters of 2 to 6 nm diameter with narrow distributions are obtained. Their icosahedral structure is identified by HRTEM observations.  相似文献   

11.
Tight-binding model is developed to study the structural and electronic properties of silver clusters. The ground state structures of Ag clusters up to 21 atoms are optimized by molecular dynamics-based genetic algorithm. The results on small Agn clusters (n = 3-9) are comparable to ab initio calculations. The size dependence of electronic properties such as density of states, s-d band separation, HOMO-LUMO gap, and ionization potentials are discussed. Magic number behavior at Ag2, Ag8, Ag14, Ag18, Ag20 is obtained, in agreement with the prediction of electronic ellipsoid shell model. We suggest that both the electronic and geometrical effect play significant role in the coinage metal clusters. Received 7 August 2000  相似文献   

12.
葛国勤  覃翠  尹淼  黄勇华 《中国物理 B》2011,20(8):80304-080304
This paper investigates theoretically the evolutions of the entanglement entropy of a system of two coupled-charge-qubits interacting with an LC-resonator.It is found that when the initial states of the two qubits are prepared in a given superposition excited state,the evolution of the von Neumann entropy of the system depends significantly on the coupling strength between the two Josephson charge qubits.With the variation of the coupling strength,the evolution of the entanglement entropy of the system forms some structures,especially the periodically bistable properties,which are the first discovered for such a system to our knowledge.It is found that the relative entropy entanglement of the system is also sensitive to the variation of the coupling strength between the two charge qubits,some novel ’collective oscillations’ of the relative entropy are found for the system.  相似文献   

13.
We have studied the characteristic features of the spectral fluorescence properties of natural compounds (umbelliferone and herniarin) in aprotic and proton-donor solvents of different polarities. Based on quantum chemical analysis by the AM1 semiempirical method of the changes in the electronic charge and bond orders in the ground state and the first excited state, we have interpreted the anomalously high Stokes shifts and mirror symmetry of the absorption and fluorescence bands of these compounds in aprotic solvents. We have established that the fluorescence spectra of umbelliferone in water, ethanol, alkaline and acidic solutions differ considerably from the analogous spectra of herniarin. This is connected with detachment and transfer of a proton in the neutral form of umbelliferone upon photoexcitation, with possible formation (depending on the pH of the medium) of an anion, cation, or tautomer. Good agreement was achieved between the calculated and experimental values of the maxima for the electronic bands of these forms. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 569–576, September–October, 2007.  相似文献   

14.
In this article, we look at the option of using a stochastic optimisation technique, namely genetic algorithm (GA) in association with density functional theory (DFT) to find out the global minimum structures of (MgF2)n clusters with the range of n being between 2 and 10. To confirm whether the structures are indeed the acceptable ones, we go on to evaluate several properties like IR spectroscopic modes, vertical excitation energy, cluster formation energy, vertical ionisation potential and the HOMO–LUMO gap. We stress on the fact that an initial estimation of structure using GA, on two empirical potentials (with and without inclusion of polarisation), leads to a very quick convergence to structures which are quite close to the structures obtained from quantum chemical calculations done from the outset, such as using a DFT calculation. The general structural trend of these systems to form three-dimensional networks is also clear from our study. The lowest energy isomers of these clusters show preference for four-membered Mg2F2 and six-membered Mg3F3 rings. In the IR spectra of (MgF2)n clusters, a blueshift of the Mg–F symmetric stretch and a redshift of asymmetric Mg–F stretching as n increases are obtained.  相似文献   

15.
The ground-state geometries, energetics and the stability of ( n =1-12) clusters are studied using ab initio molecular dynamics method. Our results indicate that the ground-state geometries of large clusters () are different from those of clusters where a trivalent impurity Al is added to the same monovalent host Na. Other features observed are an early appearance of 3-dimensional structure and a pentagonal growth path from n =6 up to n =11. As expected, the ground-state geometry of is not an icosahedron but can be viewed as a distorted form of one of the low lying geometries of cluster. In the energetically favored structures impurity atom Mg is never located at the center of the cluster. The stability analysis based on the energetics shows (8 valence electrons) to be the most stable. In addition there is a remarkable even-odd pattern observed in the dissociation energy and the second difference in energy which is absent in earlier studies of and clusters. Received: 16 September 1998 / Received in final form: 15 February 1999  相似文献   

16.
The structural and electronic properties of Bin (n = 2-14) clusters have been systematically studied using gradient-corrected density-functional theory. For each cluster size, a number of structural isomers were constructed and optimized to search for the lowest-energy structure. The competition of several structural patterns such as cages, superclusters, and layered structures leads to the alternating appearance of these configurations as global minima. Although the tendency of Bi to form puckered-layer structures is already well-known, the electronic states of Bin clusters are still far from that of the bulk. As well, a remarkable even-odd atom number oscillation is observed in the structural and electronic properties of the clusters, implying that the stability of Bin clusters is mainly dominated by the electron shell effect rather than by geometrical packing. The theoretically calculated values for electron affinities agree well with available experimental data.  相似文献   

17.
Neutral ammonia clusters (NH3)m are photo-excited to the electronic state by a deep UV femtosecond laser pump pulse. Within a few hundred femtoseconds a significant fraction of the clusters rearrange to form an H-transfer state (NH3)m-2NH4(3s)NH2 with the subunit NH4 in its 3s electronic ground state. This state is then electronically excited by a time-delayed infrared control pulse of variable wavelength. Finally, a third (probe) pulse in the UV ionizes the clusters for detection. The lifetime of the excited (NH3)m-2NH4(3p)NH2 states is found to vary between 2.7 and 0.13 ps depending on cluster size and excitation energy. It increases drastically upon deuteration. The corresponding cluster size-dependent photoelectron spectra allow us to disentangle the underlying energetics of the excitation and ionization process and reveal additional processes, such as nonresonant ionization or dissociative ionization. The experimental findings suggest that the excited H-transfer ammonia complexes with m > 2 are deactivated by an internal conversion process back to the electronically lowest H-transfer state followed by fast dissociation. Received 22 September 2001 and Received in final form 31 January 2002  相似文献   

18.
The vibrational structure of the absorption spectra of the first n*–electron transitions of the HNO and DNO molecules is calculated in the Franck–Condon approximation. A structural model of the molecules in the excited electronic state is constructed on the basis of correlations and with the aid of a method of hybrid atomic orbitals. Evaluation of the influence of deuterium substitution on the intensities of the vibrational components upon electronic excitation is made. A comparison of the experimental and theoretical absorption spectra calculated for different models of the molecules is carried out.  相似文献   

19.
The atomic and electronic properties of the adsorption of furan (C4H4O) molecule on the Si(1 0 0)-(2 × 2) surface have been studied using ab initio calculations based on pseudopotential and density functional theory. We have considered two possible chemisorption mechanisms: (i) [4 + 2] and (ii) [2 + 2] cycloaddition reactions. We have found that the [4 + 2] interaction mechanism was energetically more favorable than the [2 + 2] mechanism, by about 0.2 eV/molecule. The average angle between the CC double bond and Si(1 0 0) surface normal was found to be 22°, which is somewhat smaller than the experimental value of 28°, but somewhat bigger than other theoretical value of 19°. The electronic band structure, chemical bonds, and theoretical scanning tunneling microscopy images have also been calculated. We have determined a total of six surface states (one unoccupied and five occupied) in the fundamental band gap. Our results are seen to be in good agreement with the recent near edge X-ray absorption fine structure and high resolution photoemission spectroscopy data.  相似文献   

20.
Finite-size effects on the static and thermodynamical properties of small three-dimensional clusters of identical charged particles confined by an harmonic trap are investigated using global optimization and numerical simulations. The relative stabilities of clusters containing up to 100 particles are estimated from the second energy derivatives, as well as from the energy gap between the two lowest-energy structures at a given size. We also provide a lower bound for the number of permutationally independent minima, as a function of size, up to n=75. Molecular dynamics and exchange Monte Carlo simulations are performed to get insight into the finite temperature behaviour of these clusters. By focusing on specific sizes, we illustrate the interplay between the stable structures, the possible competition between different isomers, and the melting point. In particular, we find that the orientational melting phenomenon known in two-dimensional clusters has an equivalent form in some three-dimensional clusters. The vibrational spectra, computed for all sizes up to 100, shows an increasing number of low-frequency modes, but comparing to hydrodynamical theory reveals strong correlation effects. Finally, we investigate the effects of the trap anisotropy on the general shape of Coulomb clusters, and on the melting point of a selected case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号