首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we discuss the equilibrium phases and collapse transitions of a lyotropic nematic gel immersed in an isotropic solvent. A nematic gel consists of a cross-linked polymer network with rod-like molecules embedded in it. Upon decreasing the quality of the solvent, we find that a lyotropic nematic gel undergoes a discontinuous volume change accompanied by an isotropic-nematic transition. We also present phase diagrams that these systems may exhibit. In particular, we show that coexistence of two isotropic phases, of two nematic phases, or of an isotropic and a nematic phase can occur. Received 15 February 2002 and Received in final form 14 June 2002  相似文献   

2.
We study interfacial phenomena in a colloidal dispersion of sterically stabilized gibbsite platelets, exhibiting coexisting isotropic and nematic phases separated by a sharp horizontal interface. The nematic phase wets a vertical glass wall and polarized light micrographs reveal homeotropic surface anchoring both at the free isotropic-nematic interface and at the wall. On the basis of complete wetting of the wall by the nematic phase, as found in our density functional calculations and computer simulations, we analyze the balance between Frank elasticity and surface anchoring near the contact line. Because of weak surface anchoring, the director field in the capillary rise region is uniform. From the measured rise (6 microm) of the meniscus at the wall we determine the isotropic-nematic surface tension to be 3 nN/m, in quantitative agreement with our theoretical and simulation results.  相似文献   

3.
Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.  相似文献   

4.
This work reexamines and updates earlier investigations on the phase behaviour of the Gay-Berne liquid crystal model, concentrating on the effect of varying temperature. Constant volume and constant pressure Monte Carlo simulations are combined for systems consisting of N = 500 molecules along different isotherms over the reduced temperature range 0.60 ≤ T ≤ 1.25. As in previous simulation studies of the model, the study identifies nematic and smectic B phases on compressing the isotropic fluid, the particular phase sequence depending on temperature. The nematic phase is found to be stable with respect to the isotropic phase for reduced temperatures T ≥ 0.75. In the temperature range 0.75 ≤ T ≤ 1.25, the phase boundaries of the isotropic-nematic transition are obtained by computing the Helmholtz free energy of both phases from thermodynamic integration. From the simulation data, the relative volume change at the isotropic-nematic transition is about 2%, and this value appears to be rather insensitive to changes in temperature. On compressing the nematic phase, the Gay-Berne fluid undergoes a strong first-order transition to the smectic B phase. This transition is studied by using constant pressure simulation, and the coexistence properties are estimated from the limits of mechanical stability of the nematic phase. Larger relative volume changes are found at the transition than those suggested by previous studies, with typical values increasing up to 10.5% as the temperature is decreased. The results are consistent with the existence of strong coupling between nematic and smectic order parameters. For temperatures T ≤ 0.70 the nematic phase is no longer stable, and the phase sequence isotropic-smectic B is observed. Therefore, the Gay-Berne model exhibits an isotropic-nematic-smectic B triple point. Extrapolating the present simulation data, this triple point is located approximately at reduced temperature TINB ? 0.70 and reduced pressure PINB ? 1.825.  相似文献   

5.
We report experimental measurements of the phase behavior of mixtures of thin (charged semiflexible fd virus) and thick (fd-PEG, fd virus covalently coated with polyethylene glycol) rods with diameter ratio varying from 3.7 to 1.1. The phase diagrams of the rod mixtures reveal isotropic-nematic, isotropic-nematic-nematic, and nematic-nematic coexisting phases with increasing concentration. In stark contrast to predictions from earlier theoretical work, we observe a nematic-nematic coexistence region bound by a lower critical point. Moreover, we show that a rescaled Onsager-type theory for binary hard-rod mixtures qualitatively describes the observed phase behavior.  相似文献   

6.
The temperature variation of the magnetic susceptibility (χ) of NPOB are reported in isotropic, nematic and smectic A phases, χ and Δχ undergo sudden changes at the phase transitions. The isotropic-nematic and nematic-smectic A transitions are assigned to be first order phase transition.  相似文献   

7.
Parsons–Lee approach is formulated for the isotropic–nematic transition in a binary mixture of oblate hard spherocylinders and hard spheres. Results for the phase coexistence and for the equation of state in both phases for fluids with different relative size and composition ranges are presented. The predicted behaviour is in agreement with Monte Carlo simulations in a qualitative fashion. The study serves to provide a rational view of how to control key aspects of the behaviour of these binary nematogenic colloidal systems. This behaviour can be tuned with an appropriate choice of the relative size and molar fractions of the depleting particles. In general, the mixture of discotic and spherical particles is stable against demixing up to very high packing fractions. We explore in detail the narrow geometrical range where demixing is predicted to be possible in the isotropic phase. The influence of molecular crowding effects on the stability of the mixture when spherical molecules are added to a system of discotic colloids is also studied.  相似文献   

8.
We present the results of Monte Carlo simulations on a system of hard ellipsoids of revolution with length-to-breadth ratios a/b = 3, 2.75, 2, 1.25 and b/a = 3, 2.75, 2, 1.25. We identify four distinct phases, viz. isotropic fluid, nematic fluid, ordered solid and plastic solid. The coexistence points of all first order phase transitions are located by performing absolute free energy computations for all coexisting phases. We find nematic phases only for a/b ≥ 2.75 and a/b ≤ 1/2.75. A plastic solid is only observed for 1.25 ≥ a/b ≥ 0.8. It is found that the phase diagram is surprisingly symmetric under interchange of the major and minor axes of the ellipsoids.  相似文献   

9.
The effect of shear flow on the isotropic-nematic phase transition of attractive colloidal rods is investigated by a combination of simulations and experiments. The isotropic phase aligns with the flow, while the nematic phase undergoes a collective rotational motion which frustrates the merging of the coexisting regions. The location of binodals, spinodals, and the tumbling-to-aligning transition line in the shear-rate versus concentration plane are investigated. The phase diagrams in the shear-concentration plane for the various strengths of attractions can be mapped onto a master curve by appropriate scaling.  相似文献   

10.
The differences between the phase diagram of the Gay-Berne potential confined by two identical walls versus the corresponding bulk phase diagram have been investigated. A wall-fluid interaction 9-3 Lennard-Jones potential was used. The study was performed in most cases by using the hybrid Monte Carlo method for the μVT ensemble. Several isotherms were analysed where vapour, liquid and smectic phases were observed. The smectic-isotropic coexistence region becomes wider, i.e. the isotropic coexistence line is shifted to lower densities but the smectic coexistence line remains nearly the same. The triple point temperature of the confined system is estimated to be in the vicinity of 0.45 versus 0.40 of the bulk system. For the isotherm at T? = 0.65 an orientational dependence was added to the 9-3 Lennard-Jones potential to model the wall-fluid interaction. For both kinds of walls, 9-3 LJ with and without orientational dependence, confinement was not found to stabilize a nematic phase as found by previous authors.  相似文献   

11.
The effects of range and geometry of a simple attractive square-well on the phase diagram of hard ellipsoids and hard spherocylinders is systematically studied using a simple van der Waals type theory. The orientational single particle distribution function is approximated using the Onsager trial function. The quantitative errors introduced by this are thought to be considerably smaller than the use of the van der Waals approximation, which has been shown to give qualitatively correct phase diagrams for similar models. The phase diagrams obtained for hard ellipsoids and hard spherocylinders of aspect ratios ranging between 3 and 10 with a variety of square-well attractions are found to fall into three general types. The first type shows liquid-vapour coexistence and an isotropic-nematic transition, which meet at a liquid-vapour-nematic triple point. The second type shows a marked widening of the isotropic-nematic biphasic region which pre-empts the liquid-vapour coexistence. The final phase diagram shows a strong destabilization of the nematic phase with respect to the isotropic, which results in a shift of the phase transition to higher densities and pressures as the temperature is lowered.  相似文献   

12.
A suspension of long rodlike colloids and long stiff polymers is modelled as a mixture of hard rods. The diameter of the colloid particle is finite, while the polymer is considered in the limit of zero diameter. Two types of first-order phase transition may occur in such mixtures: an isotropic-nematic phase transition if the density (or the pressure) is high enough, and a demixing transition involving two isotropic phases. The demixing transition has a critical point, and a triple point with one nematic and two isotropic phases may also exist. Phase diagrams are calculated. For the demixing isotropic-isotropic transition to be observed the ratio between the polymer length and the colloid length must exceed 0.36.  相似文献   

13.
The phase behavior of rod-plate mixtures was investigated using model systems containing unambiguously rod- and plate-shaped colloids. We find that the theoretically disputed biaxial nematic phase is unstable with respect to demixing into an isotropic and two uniaxial nematic phases. The phase behavior at very high densities is exceptionally rich and includes the coexistence of up to four different liquid crystalline phases, which stem from the coupling between the employed particle shapes and polydispersity.  相似文献   

14.
Summary The effect of non-adsorbing, flexible polymer on the isotropic-nematic transition in dispersions of rod-like colloids is investigated. A widening of the biphasic gap is observed, in combination with a marked polymer partitioning between the coexisting phases. Under certain conditions, areas of isotropic-isotropic-nematic or isotropic-nematic-nematic three-phase coexistence appear in the phase diagram of rod-polymer mixtures. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids Copanello, Italy, July 4–8 1994.  相似文献   

15.
《Molecular physics》2012,110(11-12):1269-1288
A generic equation of state (EoS) is developed for the hard cylindrical disc model to describe the isotropic phase of hard cut-sphere particles introducing a correction parameter to incorporate the negative contributions from higher-order virial coefficients. The isotropic–nematic–columnar phase diagram of hard cut-sphere fluids is investigated combining the new EoS with a scaled Onsager free energy for the nematic phase and an extended cell theory for columnar phase. By mapping the virial coefficients of an oblate spherocylinder on to those of the cylindrical disc (which are known algebraically), the new generic EoS is used to describe the isotropic and nematic phases of hard oblate spherocylinder particles. The predictions of the generic EoS are compared with available simulation data.  相似文献   

16.
We report that the properties of the isotropic to nematic liquid crystalline phase transition of F-actin depend critically on the average filament length. For average filament lengths longer than 2 microm, we confirm previous findings that the phase transition is continuous in both alignment and concentration. For average filament lengths shorter than 2 microm, we show for the first time a first order transition with a clear discontinuity in both alignment and concentration. Tactoidal droplets of coexisting isotropic and nematic phases, differing in concentration by approximately 30%, form over the course of hours and appear to settle into near equilibrium metastable states.  相似文献   

17.
We have used the density functional theory to study the effect of molecular elongation on the isotropic-nematic, isotropic-smectic A and nematic-smectic A phase transitions of a fluid of molecules interacting via the Gay-Berne intermolecular potential. We have considered a range of length-to-width parameter 3.0 ⩽ x0 ⩽ 4.0 in steps of 0.2 at different densities and temperatures. Pair correlation functions needed as input information in density functional theory are calculated using the Percus-Yevick integral equation theory. Within the small range of elongation, the phase diagram shows significant changes. The fluid at low temperature is found to freeze directly from isotropic to smectic A phase for all the values of x0 considered by us on increasing the density while the nematic phase stabilizes in between isotropic and smectic A phases only at high temperatures and densities. Both isotropic-nematic and nematic-smectic A transition density and pressure are found to decrease as we increase x0. The phase diagram obtained is compared with computer simulation result of the same model potential and is found to be in good qualitative agreement.  相似文献   

18.
ABSTRACT

Free volume theory (FVT) is a versatile and tractable framework to predict the phase behaviour of mixtures of platelets and non-adsorbing polymer chains in a common solvent. Within FVT, three principal reference phases for the hard platelets are considered: isotropic (I), nematic (N) and columnar (C). We derive analytical expressions that enable us to systematically trace the different types of phase coexistences revealed upon adding depletants and confirm the predictive power of FVT by testing the calculated diagrams against phase stability scenarios from computer simulation. A wide range of multi-phase equilibria is revealed, involving two-phase isostructural transitions of all phase symmetries (INC) considered as well as the possible three-phase coexistences. Moreover, we identify the system parameters, relative disk shapes and colloid–polymer size ratios, at which four-phase equilibria are expected. These involve a remarkable coexistence of all three-phase states commonly encountered in discotics including isostructural coexistences I1–I2–N–C, I–N1–N2–C and I–N–C1–C2.  相似文献   

19.
In liquid-crystalline elastomers, the nematic order parameter and the induced strain vary smoothly across the isotropic-nematic transition, without the expected first-order discontinuity. To investigate this smooth variation, we measure the strain as a function of temperature over a range of applied stress, for elastomers cross-linked in the nematic and isotropic phases, and analyze the results using a variation on Landau theory. This analysis shows that the smooth variation arises from quenched disorder in the elastomer, combined with the effects of applied stress and internal stress.  相似文献   

20.
We present a detailed study of the solutions of the hypernetted chain integral equation inside the gas-liquid coexistence region for simple Lennard-Jones fluids. The study is performed by means of a hybrid Newton-Raphson algorithm extended to cope with complex solutions. In this way, we have unequivocally confirmed that the origin of the well-known HNC singular behavior inside the coexistence curve is linked to the onset of complex solutions. As density is increased starting from the vapor phase along isotherms inside the coexistence region, another singularity is encountered (very likely linked with the existence of a complex multiple solution point), and correlations start to diverge. Therefore, with the numerical approach here presented it is not feasible to join the liquid and vapor phases through an analytically continuous path of real and complex solutions. Finally, a study of the transition from the mean spherical approximation behavior (characterized by the presence of a spinodal divergence) to the peculiar hypernetted chain sort of singularity is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号