首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Laser induced fluorescence (LIF), single vibronic level dispersed fluorescence (DFL) spectra, and high resolution rotationally resolved scans of the S0–S1 transition of the C10H8 isomer 1-phenyl-1-butyn-3-ene have been recorded under jet-cooled conditions. The S0–S1 origin of PAV at 34 922 cm−1 is very weak. A vibronic band located 464.0 above the origin, assigned as 3010, dominates the LIF excitation spectrum, with intensity arising from vibronic coupling with the S2 state. High resolution scans of the S0–S1 origin and 3010 vibronic bands determine that the former is a 65:35 a:b hybrid band, while 3010 is a pure a-type band, confirming the role for vibronic coupling and identifying the coupled state as the S2 state. DFL spectra of all vibronic bands in the first 800 cm−1 of the spectrum were recorded. A near-complete assignment of the vibronic structure in both S0 and S1 states is obtained. Herzberg–Teller vibronic coupling is carried by two vibrations, ν28 and ν30, involving in-plane deformations of the vinylacetylene side chain, leading to Duschinsky mixing evident in the intensities of transitions in excitation and DFL spectra. Extensive Duschinsky mixing is also present among the lowest five out-of-plane vibrational modes, involving motion of the side chain. Comparison with the results of DFT B3LYP and TDDFT calculations with a 6-311+G(d,p) basis set confirm and strengthen the assignments.  相似文献   

2.
The vibronic coupling between the first excited S1 (21Ag) and the second excited S2 (11Bu) singlet electronic states in spectroscopy of trans‐1,3,5‐hexatriene molecule is investigated on the basis of a model consisting of two electronic states coupled by two vibrational modes. Employing a perturbation theory that treats the intramolecular couplings in a perturbative manner, the absorption and resonance Raman cross sections and excitation profiles of this molecule are calculated using the time‐correlation function formalism. The non‐Condon corrections are included in evaluation of cross sections. The multidimensional time‐domain integrals that arise in these calculations have been evaluated for the case in which S0 (11Ag) S2 (11Bu) electronic transition takes place between displaced and distorted harmonic potential energy surfaces. The calculated spectra are in good agreement with the experimental ones. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The vibronic couplings of pyrazine-d0 and pyrazine-d4 between the lowest electronic excited states 1B3u(n, π*) and 1B2u(π, π*) through the out-of-plane CH bending vibration ν10a(b1g) have been studied from the Raman, electronic absorption and fluorescence spectra. The isotope effects on the scattering cross section of the ν10a Raman line, the vibrational potential in the 1B3u(n, π*) state and on the frequency change of the ν10a vibration between the ground and the lowest electronic excited states are well explained by conventional Herzberg-Teller coupling mechanism. However, the intensities of the vibronic bands in the electronic absorption and fluorescence spectra are hardly explained with this coupling mechanism.  相似文献   

4.
The effect of deuteration of the central NH groups on the quasi-linear fluorescence and fluorescence excitation (with selective monitoring) spectra for triazatetrabenzoporphine, a close analog of phthalocyanine, has been investigated at 77K in n-nonane. Vibrational analysis of the spectra was carried out. The normal mode frequencies were determined for the electronic states S0 (from fluorescence spectra) and S1 (for fluorescence excitation spectra). It has been established that N-deuteration lowers the frequency of a vibration involving inplane NH bending down to ∼990 cm−1 and leads to resonant vibrational-electronic (vibronic) interaction of Fermi-type resonance between the zero level of the S2 state and the vibronic level of the S1 state upon excitation of this mode. Thereby the possibility of the “vibronic analog of Fermi resonance” (a term coined by G. Herzberg) occurring in a simple (two-component) variant of phthalocyanine-type molecules has been shown. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 796–803, November–December, 2008.  相似文献   

5.
Quasiline electronicvibrational spectra of fluorescence and absorption (excitation of fluorescence in selective recording) of the molecules of phthalocyanine deuterated around the periphery of benzene rings (H2Phcd 16) and the center of the macrocycle (D2Phc) are obtained. The vibrational frequencies of the ground state are almost insensitive to this deuteration (except for vibrations with the participation of angular deformations). In excitation spectra, changes in deuteration are more pronounced due to the effects of nonadiabatic vibronic interaction of the vibrational sublevels of the S 1 state and of the purely electronic level S 2.  相似文献   

6.
The fluorescence excitation spectra of jet-cooled carbazole molecules at vibrational temperatures of 55 and 80 K and the fluorescence spectrum of these molecules excited by radiation at the frequency of a pure electronic transition are measured. As the vibrational temperature increases, the excitation spectra exhibit a series of lines of the same symmetry, which are caused by the interaction of the active vibration with a subensemble of optically inactive vibrations. The final symmetry of the totally and nontotally symmetric vibrations is determined from the shape of the rotational contours of the lines of vibronic transitions. The values of a decrease in the frequency of the nontotally symmetric vibrations in the first excited electronic state S 1 due to their interaction with the electronic state S 2 are calculated to be up to 100 cm?1. The frequencies of the pure electronic transitions in the absorption and fluorescence spectra coincide with each other and are equal to 30809 cm?1, the frequencies of vibrations in the ground state S 0 exceeding the frequencies of the corresponding vibrations in the excited state S 1. The degree of polarization of the integral fluorescence is determined for a series of vibronic transitions of the a 1 and b 2 final symmetry that are observed in the fluorescence excitation spectra, and the contribution of the intensity with the borrowed polarization θ to the integral fluorescence is calculated. It is found that the intensity θ is higher for the transitions of the b 2 symmetry and can reach ≈50%.  相似文献   

7.
A. WÜEST  P. RUPPER  F. MERKT 《Molecular physics》2013,111(23):1941-1958
The I(3/2u) and I(3/2g) states of Kr+ 2 have been investigated by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy following (2 + 1′) resonance-enhanced multiphoton excitation via the 0+ g Rydberg state located below the Kr?([4p]55p[1/2]0) + Kr(1S0) dissociation limit of Kr2. From the positions of a large number of vibrational bands in the spectra of the 84Kr2 and 84Kr-86Kr isotopomers, the adiabatic ionization potentials (IP(I(3/2u)) = 112672.4 ± 0.8cm?1, IP(I(3/2g)) = 111 395.0 ± 1.4cm?1), the dissociation energies (D + 0(I(3/2u)) = 368.8 ± 2.0cm?1, D + 0(I(3/2g)) = 1646.2 ± 2.3cm?1) and vibrational constants for both ionic states have been determined. Potential energy curves have been extracted which perfectly reproduce all experimental observations and are accurate over a wide range of energies and internuclear distances. The equilibrium internuclear distances (R + e(I(3/2u)) = 4.11 ± 0.04 Å, R + e(I(3/2g)) = 3.35 ± 0.10 Å) have been derived by comparing the intensity distribution in the PFI-ZEKE photoelectron spectra to calculated Franck-Condon factors. The dissociation energy of the I(3/2g) state and the equilibrium internuclear distance of the I(3/2u) state differ markedly from previously reported values.  相似文献   

8.
The photophysics and photochemistry of pyrazine (C4H4N2, D2h) after excitation to the S2 (1 1B2u, 1ππ*) electronic state were studied by using the resonance Raman spectroscopy and complete active space self‐consistent field method calculations. The B‐band resonance Raman spectra in cyclohexane solvent were obtained at 266.0, 252.7, and 245.9 nm excitation wavelengths to probe the structural dynamics of pyrazine in the S2 (1 1B2u, 1ππ*) state. Three electronic states 1 1B3u, 1 1B1g, and 1 1B2g were found to couple with the S2 (1 1B2u, 1ππ*) state. Two conical intersection (CI) points CI[S2(B2u)/S1(B3u)] and CI[S1/S0] and one transition state of the isomerization between pyrazine and pyrimidine were predicted to play important roles in the photochemistry of pyrazine. On the basis of the calculations, the mechanism of the photoisomerization reaction between pyrazine and pyrimidine has been proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The fluorescence and phosphorescence spectra of the aromatic amines acridan, iminobibenzyl, and carbazole have been measured in Shpolskii matrices at 10 K. Under these conditions the emission exhibits a detailed vibrational structure which has been analyzed. The change of the polarization degree observed within the fluorescence spectra at 77 K, particularly pronounced in acridan and iminobibenzyl, is attributed to vibronic interaction between the closely lying S1(1A1) and S2(1B1) excited states. This process activates a b1 vibration with a frequency of 1200 cm−1 in the ground state. The appearance of a long-axis (b1) polarized vibration (700 cm−1) following the out-of-plane polarized 0-0 band of the phosphorescence of these amines at 77 K is suggested to arise from vibronic interactions in the triplet manifold. This second-order spin-orbit coupling (soc) process is superimposed upon the dominant first-order electronic soc mechanism, which couples the lowest π, π* triplet with high-energy (σ, π)* singlet states.  相似文献   

10.
Fluorescence has recently been applied to the analysis of the molecular organization state of the polyene antibiotic amphotericin B (AmB) in solution or in lipid membranes. The polyene chain of AmB monomer gives rise to two fluorescence emissions; S1(21Ag) → S0(11Ag) between 500 and 700 nm, S2(11Bu) → S0(11Ag) between 400 and 500 nm. However, Raman scattering might interfere with the S2 → S0 emission fluorescence due to the weak fluorescence quantum yield and close proximity to the exciting lines. In fact, we show here that a change in the excitation wavelength results in a shift of three emission bands, an effect which excludes their assignment to fluorescence. These bands originate from the water Raman at 3382 cm-1and AmB resonance Raman at 1556 and 1153 cm-1. As a consequence, some former conclusions on the molecular organization state of AmB should be reconsidered.  相似文献   

11.
We have generated thep-cyanobenzyl radical in supersonic free expansion, and measured the vibrationally and rotationally resolved laser induced fluorescence (LIF) excitation spectra and the LIF dispersed spectra from the single vibronic levels (SVL) in the green-blue region. The lowest energy band at 20 738 cm−1with the strongest intensity in the excitation spectrum has been assigned to the 000band of the visible spectrum, on the basis of the vibronic structures in the SVL dispersed spectra. Based on the band type of the 000band,a-type, determined from the rotationally resolved LIF excitation spectrum, we have definitely assigned the visible band to theD122B1–D012B1electronic transition. We have found, on the grounds of the vibrational analysis of the dispersed spectra, that the vibronic structure of the 22B1–12B1electronic transition of the benzyl type is characterized by totally symmetric fundamental modes, 1, 8a, and 9a.  相似文献   

12.
Highly resolved fluorescence and S1←S0 absorption spectra of some phenanthrolines in n-alkane matrices were obtained at 77 K. The vibrational analysis of the spectra was carried out. Mirror symmetry distortions of the fluorescence and absorption spectra were attributed to vibronic coupling between 1(π, π1) states. It was shown that vibronic mixing of S1(π, π1) and S2(π, π1) states occurs in phenanthroline molecules with S1-S2 energy gap not exceeding 3000 cm-1 (i.e., 4,7-, 1,7- and 1,10-Phen), whereas in other phenanthrolines the coupling of S1 and S3(π, π1) plays a dominant role. Fluorescence quantum yields of phenanthroline liquid solutions were measured. Changes of luminescence efficiencies due to the change of the polarity of the media point to a weak coupling of the lowest 1(π, π1) and 1(n, π1) states.  相似文献   

13.
We have calculated the vibronic absorption and fluorescence spectra of the first (1 L b ) and second (1 L a ) electronic transitions of indole in the isolated state and aqueous solution. The vibrational structure of the absorption and fluorescence spectra has been interpreted. The influence of the aqueous solution on the vibronic spectra has been shown.  相似文献   

14.
胡伟敏  顾一鸣  任尚元 《物理学报》1986,35(12):1582-1591
利用紧束缚近似下的格林函数方法,讨论了Si中(S0)2,(Se0)2及(Te0)2基态的能级和波函数。分析了几种不同的观点。(S0)2,(Se0)2及(Te0)2均在禁带中引入一个对称性的A1g能级和一个反对称性的A2u能级,二者都是填满的。现有实验观测到的是较高的A1g能级。从理论上指出了对称性的A1g能级反而高于反对称性的能级的原因。而Si中(Se2)+的g因子测量值和(S2)+,(Se2)+的ESR实验结果也支持本文的观点。 关键词:  相似文献   

15.
New fluorescence excitation and dispersed SVL fluorescence spectra of s-tetrazine vapor in supersonic expansions of helium and argon are reported. A forbidden in-plane-polarized component of the A?1B3u-X?1Ag transition is discovered at (0, 0) + 578 cm?1 with a type-B band contour in rotationally resolved excitation spectra obtained with a single-frequency cw ring dye laser. Linewidth measurements of single rovibronic transitions provide data to calculate lifetimes of low-lying S1 vibronic states of the isolated molecule. Depending on the vibrational mode involved, the lifetime varies from 0.05 to greater than 1 nsec. The number of cold-band assignments in the absorption spectrum of s-tetrazine vapor now confirmed by analysis of SVL fluorescence spectra increases from three to ten.  相似文献   

16.
In fine-structure phosphorescence spectra of metallocomplexes of porphin with ions of the Pd(II) and Pt(II) and their meso-deuterated derivatives additional lines have been detected which have no analogs in fluorescence and resonance Raman spectra of metalloporphyrins and in phosphorescence spectra of metallocomplexes of porphin with light ions of the Mg(II) and Zn(II). For Zn-porphin, quantum-chemical calculations of frequencies and forms of in-plane and out-of-plane vibrations have been performed. Based on experimental data and calculation results it has been found, that in vibronic phosphorescence spectra of metallocomplexes of porphin, out-of-plane gerade modes of the E g symmetry (D 4h symmetry group) are manifested. The activity of out-of-plane vibrations increases with enhancing spin-orbital coupling upon changing to heavier chelated metal ions. Vibronic transitions with participation of out-of-plane gerade E g vibrations manifest in the T 1S 0 transition through the vibronic intensity borrowing from the triplet-triplet 3 E u -3 E g transition.  相似文献   

17.
Fluorescence and excitation spectra of coronene vapor have been measured under different conditions. Weak emission which can be regarded as the fluorescence from the third excited singlet state, S3(1E1u), was observed in addition to the S1(1B2u) and S2(1B1u) fluorescence. The observed S2 and S3 fluorescence are substantially different from those reported previously for coronene vapor. Addition of oxygen resulted in significant decrease of the S1 fluorescence intensity, but did not affect the S2 fluorescence intensity, indicating the faster decay rate of the S2 state than that of S1. Excitation energy dependence of the S1, S2 and S3 fluorescence quantum yields (ΦF(S1), ΦF(S2) and ΦF(S3), respectively) revealed that ΦF(S1) decreases with increasing excitation energy, while ΦF(S2) and ΦF(S3) increase significantly. The quantum yield ratios, ΦF(S2)/ΦF(S1) and ΦF(S3)/ΦF(S2), obtained as a function of excitation energy are correlated with the ratios of the relative internal conversion rates.  相似文献   

18.
High resolution laser induced fluorescence excitation spectra upon absorption in the A1B3u ← X1Ag band of jet-cooled terrylene have been recorded. Precise energies of three vibronic transitions are deduced. Low lying vibrations are found in both electronic states. Rotational constants in ground and excited state are determined by band contour analysis. Terrylene is a medium-size polycyclic aromatic hydrocarbon (PAH) and a possible carrier of diffuse interstellar bands (DIB). The results of the jet experiments are discussed regarding the PAH-DIB hypothesis.  相似文献   

19.
Laser-induced fluorescence excitation spectra of the HNO band system have been recorded with high sensitivity. This has enabled detection of the Franck-Condon unfavored vibronic bands (002)-(000) and (003)-(000), thereby completing the set of fully bound vibronic levels in the à state. Extensions have also been made to other bands. A strong Coriolis resonance between the Ka1 = 8 levels of the excited (010) vibronic state and the Ka1 = 9 levels of the (001) state leads to rotational perturbations of up to 9 cm−1. The (100-000) band includes weak axis-tilting branches. It is concluded from the vibrational energy level spacings that vibronic interaction makes an important contribution to the energies of the higher bending levels, consistent with the correlation of the Ã1A″ state with a component of a 1Δ state for linear HNO.  相似文献   

20.
Two-dimensional laser-induced fluorescence (2D-LIF) spectroscopy is employed to identify contributions to fluorescence excitation spectra that arise from both overlapping bands and coupling between zero-order states (ZOSs). Evidence is found for the role of torsional motion in facilitating the coupling between vibrations that particularly involves the lowest-wavenumber out-of-plane vibrational modes. The experiments are carried out on jet-cooled p-fluorotoluene, where the molecules are initially in the lowest two torsional levels. Here we concentrate on the 390–420?cm?1 features in the S1?←?S0 excitation spectrum, assigning the features seen in the 2D-LIF spectrum, aided by separate dispersed fluorescence spectra. The 2D-LIF spectra allow the overlapping contributions to be cleanly separated, including some that arise from vibrational-torsional coupling. Various coupling routes open up because of the different symmetries of the lowest two torsional modes; these combine with the vibrational symmetry to provide new symmetry-allowed vibration-torsion (‘vibtor’) interactions, and the role of the excited m?=?1 torsional level is found to be significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号