首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
2.
Speed of sound and densities of the ternary mixture 2-propanol + diethyl ether + n-hexane and also the binary mixtures 2-propanol + diethyl ether and 2-propanol + n-hexane have been measured at the entire composition range at 298.15 K. The excess isentropic compressibilities and the excess speed of the sound have been calculated from experimental densities and speed of sound. These excess properties of the binary mixtures were fitted to Redlich-Kister equation, while the Cibulka’s equation was used to fit the values related to the values to the ternary system. These excess properties have been used to discuss the presence of significant interactions between the component molecules in the binary mixtures and also the ternary mixtures. Speed of sound of the binary mixtures and the ternary mixture have been compared with calculated values from free length theory (FLT), collision factor theory (CFT), Nomoto’s relation (NR), Van Deal’s ideal mixing relation (IMR) and Junjie’s relation (JR). The results are used to compare the relative merits of these theories and relations in terms of the root mean square deviation relative (RMSDr).  相似文献   

3.
4.
付东  王学敏  刘建岷 《物理学报》2009,58(5):3022-3027
在Weeks-Chandler-Andersen (WCA)微扰理论的基础上,建立了一个状态方程,研究了温度和压力以及模型共聚物分子链长对体系相平衡和临界胶束浓度的影响. 关键词: 超临界二氧化碳 模型共聚物 相平衡 临界胶束浓度  相似文献   

5.
ABSTRACT

In this work, a quadrupolar cubic plus association (qCPA) equation of state is evaluated for its ability to predict the phase equilibria of multicomponent mixtures containing CO2 and alkanes, alcohols, and/or water. A single binary interaction parameter is employed in qCPA for all binary combinations. All parameters are based solely on pure fluid or binary mixture data and multicomponent data are used only to evaluate the predictions. The performance of qCPA is, for all mixtures, compared to CPA where CO2 is considered to be either non-associating (inert), solvating or self-associating. In the latter two approaches, an additional adjustable parameter is employed for binary pairs of CO2 and an associating compound. The results show that the predictions with qCPA are very similar to the best performing CPA approaches, even though the model uses fewer adjustable binary parameters. The predictions with qCPA and the best CPA approaches are typically satisfactory and predict the general behaviour of the systems. As expected, qCPA and CPA with solvation or association typically performs better than inert CPA for two- and three phase vapour–liquid and vapour–liquid–liquid equilibria. However, inert CPA yields the best results of all the models for the prediction of dew point pressures.  相似文献   

6.
Measurements of advancing contact angle (θ) were carried out on polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA) for aqueous solution of sodium dodecyl sulfate (SDDS) mixtures with methanol, ethanol and propanol in the range of SDDS concentration from 10−5 to 10−2 M, and for sodium hexadecyl sulfonate (SHS) with the same alcohols at the SHS concentration ranging from 10−5 to 8 × 10−4 M at 293 K. The concentration of methanol, ethanol and propanol used for measurements varied from 0 to 21.1, 11.97 and 6.67 M, respectively. On the basis of the contact angles the critical surface tension of PTFE and PMMA wetting was determined by using for this purpose the relationship between the adhesion and the surface tension and cos θ and surface tension both at constant alcohol and surfactant concentration, respectively. The obtained contact angles were also used in the Young Dupre’ equation for calculations of the adhesion work of aqueous solution of mixtures of anionic surfactants and short chain alcohols to PTFE and PMMA surface. The adhesion work calculated in this way was compared to that of the particular components of aqueous solution to these surfaces determined on the basis of the surface tension components and parameters of the surface tension of the surface active agents, water, PTFE and PMMA from van Oss et al. equation. The calculated adhesion work was discussed in the light of the concentration of surface active agents at polymer-water and water-air interface determined from Lucassen-Reynders, Gibbs and Guggenheim-Adam equations.  相似文献   

7.
We study theoretically the influence of light waves on the thermoelectric power under large magnetic field (TPM) for III‐V, ternary and quaternary materials, whose unperturbed energy‐band structures, are defined by the three‐band model of Kane. The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings in the presence of external photoexcitation. It has been found by taking n‐InAs, n‐InSb, n‐Hg1‐xCdxTe and n‐In1‐xGaxAsyP1‐y lattice matched to InP as examples that the TPM decreases with increase in electron concentration, and increases with increase in intensity and wavelength, respectively in various manners. The strong dependence of the TPM on both light intensity and wavelength reflects the direct signature of light waves that is in direct contrast as compared with the corresponding bulk specimens of the said materials in the absence of external photoexcitation. The rate of change is totally band‐structure dependent and is significantly influenced by the presence of the different energy‐band constants. The well‐known result for the TPM for nondegenerate wide‐gap materials in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions and this compatibility is the indirect test of our generalized formalism. Besides, we have also suggested the experimental methods of determining the Einstein relation for the diffusivity:mobility ratio, the Debye screening length and the electronic contribution to the elastic constants for materials having arbitrary dispersion laws.  相似文献   

8.
The type of specific intermolecular and interionic interactions that are established when an ionic liquid is dissolved in water was here analysed. The study of the solvatochromic response of dipolarity micro‐sensors based on Reichardt ET(30) and Kamlet–Abboud–Taft solvent scales and the application of the solvent exchange model confirmed the formation of different intersolvent complexes in binary mixtures of (water + [C4mim] [BF4]/[Br]) type. These complexes provide H‐bond or electron pairs to the polar network, respectively. Moreover, for 4‐methoxybenzenesulfonyl chloride hydrolysis reaction in the (water + [C4mim] [BF4]) system, a higher inhibition (13 times) on the kobs values was observed. Multiple linear regression analysis that allows confirming the solvent effect upon the reactive system is due to the hydrogen‐bond donor properties of intersolvent complex formed. Then, the correlation between two different solvent‐dependent processes proved to be successful. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Theoretical study of the elimination kinetics of 2‐phenylethanol, 1‐phenyl‐2‐propanol, and 2‐methyl‐1‐phenyl‐2‐propanol in the gas‐phase has been carried out at the MP2/6‐31G(d,p), B3LYP/6‐31G(d,p), B3LYP/6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), and PBEPBE/6‐31++G(d,p) levels of theory. The three substrates undergo two parallel elimination reactions. The first elimination appears to proceed through a six‐membered cyclic transition state to give toluene and the corresponding aldehyde or ketone. The second parallel elimination takes place through a four‐membered cyclic transition state producing water and the corresponding unsaturated aromatic hydrocarbon. Results from MP2/6‐31G(d,p) and MPW1PW91/6‐31++G(d,p) methods were found to be in good agreement with the experimental kinetic and thermodynamic parameters in the formation of toluene and the corresponding carbonyl compound. However, the results for PBEPBE/6‐31G(d,p) were in better agreement with the experimental data for the second parallel reaction yielding water and the corresponding unsaturated aromatic hydrocarbon. The charge distribution differences in the TS related to the substitution by methyl groups in the substrates can account for the observed reaction rate coefficients. The synchronicity parameters imply semi‐polar transition states for these elimination reactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号