首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper addresses the significance of the general class of diffeomorphisms in the theory of general relativity as opposed to the Poincaré group in a special relativistic theory. Using Anderson's concept of an absolute object for a theory, with suitable revisions, it is shown that the general group of local diffeomorphisms is associated with the theory of general relativity as its local dynamical symmetry group, while the Poincaré group is associated with a special relativistic theory as both its global dynamical symmetry group and its geometrical symmetry group. It is argued that the two groups are of equal significance as symmetry groups of their associated theories.  相似文献   

2.
《Physics letters. [Part B]》1987,194(2):267-270
When quantising a classical field theory it is not automatic that a group of symmetries of the classical system is preserved as a symmetry of the quantum system. Apart from the phenomenon of symmetry breaking it can also happen (as in Faddeev's Gauss law anomaly) that only an extension of the classical group acts as a symmetry group of the quantum system. We show here that rather than signalling a failure of the associative law as has been suggested in the literature, the occurrence of a non-trivial three-cocycle on the local gauge group is an “anomaly” or obstruction to the existence of an extension of the local gauge group acting as a symmetry group of the quantum system.  相似文献   

3.
The problem of constructing the central extensions, by the circle group, of the group of Galilean transformations in two spatial dimensions; as well as that of its universal covering group, is solved. Also solved is the problem of the central extension of the corresponding Lie algebra. We find that the Lie algebra has a three parameter family of central extensions, as does the simply-connected group corresponding to the Lie algebra. The Galilean group itself has a two parameter family of central extensions. A corollary of our result is the impossibility of the appearance of non-integer-valued angular momentum for systems possessing Galilean invariance.  相似文献   

4.
O8h结构磁空间群C-G系数的计算   总被引:6,自引:0,他引:6  
磁空间群相对于以往的空间群,在对物理图像的描述上更准确、更深刻。如它可在考虑晶体对称性的同时,也考虑到自旋磁矩的作用,因而它的C-G系数更加重要。本文利用本征函数法,计算了面心立方结构Oh^8磁空间群的C-G系数,以及波矢选择规则和C-G序列。  相似文献   

5.
A unified treatment of conservation laws in general relativity, gauge theories, and elementary particle physics is formulated in the setting of principal fiber bundles. The group AUT(P) is introduced as the general gauge transformation group that covers space-time coordinate transformations. A set of master equations is exhibited for any Lagrangian density generally covariant with respect to AUT(P). The symmetry group for elementary particle theory is shown to be the structure group of the bundle only in the special case when the gauge potential is flat and the space-time is simply connected. In the general case, the symmetry group is reduced to the symmetry group of the gauge potential. This natural mechanism for a reduction of the symmetry group is speculated on as a model for spontaneous symmetry breaking.This essay received an honorable mention from the Gravity Research Foundation for the year 1981-Ed.Partially supported by a grant from the National Science Foundation.  相似文献   

6.
We use the realisation of the universal bundle for the loop group as the path fibration of the group to investigate the string class, that is the obstruction to a loop group bundle lifting to a Kac-Moody group bundle. In the case that the loop group bundle is constructed by taking loops into a principal bundle we show that the classifying map is the holonomy around loops and give an explicit formula for the string class relating it to the Pontrjangin class of the principal bunble.  相似文献   

7.
In this paper we postulate an algebraic model to relate the triplet characteristic of lepton families to Lorentz violation. Inspired by the two-to-one mapping between the group SL(2, C) and the Lorentz group via the Pauli grading (the elements of SL(2, C) expressed by direct sum of unit matrix and generators of SU (2) group), we grade the SL(3, C) group with the generators of SU(3), i. e. the Gell-Mann matrices, then express the SU(3) group in terms of three SU(2) subgroups, each of which stands for a lepton species and is mapped into the proper Lorentz group as in the case of the group SL(2,C). If the mapping from group SL(3,C) to the Lorentz group is constructed by choosing one SU(2) subgroup as basis, then the other two subgroups display their impact only by one more additional generator to that of the original Lorentz group. Applying the mapping result to the Dirac equation, it is found that only when the kinetic vertex γμξμ is extended to encompass γμξμ can the Dirac-equation-form be conserved. The generalized vertex is useful in producing neutrino oscillations and mass differences.  相似文献   

8.
利用本征函数法(EFM方法)计算了Oh^1结构磁空间群第一布里渊区部分点的C-G系数。  相似文献   

9.
By considering the geometry of the central extension of the loop group as a principal bundle it is shown that it must be the quotient of a larger group. This group is a central extension of the group of paths in the loop group and its cocycle is constructed as the holonomy around a certain path. Conversely it is shown that this definition of a cocycle gives a method of constructing the central extension. The Wess-Zumino term plays an important role in these constructions.  相似文献   

10.
In this paper, I investigate a connection between a common characterisation of freedom and how uncertainty is managed in a Bayesian hierarchical model. To do this, I consider a distributed factorization of a group’s optimization of free energy, in which each agent is attempting to align with the group and with its own model. I show how this can lead to equilibria for groups, defined by the capacity of the model being used, essentially how many different datasets it can handle. In particular, I show that there is a “sweet spot” in the capacity of a normal model in each agent’s decentralized optimization, and that this “sweet spot” corresponds to minimal free energy for the group. At the sweet spot, an agent can predict what the group will do and the group is not surprised by the agent. However, there is an asymmetry. A higher capacity model for an agent makes it harder for the individual to learn, as there are more parameters. Simultaneously, a higher capacity model for the group, implemented as a higher capacity model for each member agent, makes it easier for a group to integrate a new member. To optimize for a group of agents then requires one to make a trade-off in capacity, as each individual agent seeks to decrease capacity, but there is pressure from the group to increase capacity of all members. This pressure exists because as individual agent’s capacities are reduced, so too are their abilities to model other agents, and thereby to establish pro-social behavioural patterns. I then consider a basic two-level (dual process) Bayesian model of social reasoning and a set of three parameters of capacity that are required to implement such a model. Considering these three capacities as dependent elements in a free energy minimization for a group leads to a “sweet surface” in a three-dimensional space defining the triplet of parameters that each agent must use should they hope to minimize free energy as a group. Finally, I relate these three parameters to three notions of freedom and equality in human social organization, and postulate a correspondence between freedom and model capacity. That is, models with higher capacity, have more freedom as they can interact with more datasets.  相似文献   

11.
The covariance group for general relativity, the diffeomorphisms, is replaced by a group of coordinate transformations which contains the diffeomorphisms as a proper subgroup. The larger group is defined by the assumption that all observers will agree whether any given quantity is conserved. Alternatively, and equivalently, it is defined by the assumption that all observers will agree that the general relativistic wave equation describes the propagation of light. Thus, the group replacement is analogous to the replacement of the Lorentz group by the diffeomorphisms that led Einstein from special relativity to general relativity, and is also consistent with the assumption of constant light velocity that led him to special relativity. The enlarged covariance group leads to a non-commutative geometry based not on a manifold, but on a nonlocal space in which paths, rather than points, are the most primitive invariant entities. This yields a theory which unifies the gravitational and electroweak interactions. The theory contains no adjustable parameters, such as those that are chosen arbitrarily in the standard model.  相似文献   

12.
In this paper, we propose a novel photonic crystal fibre (PCF) with high phase birefringence and very low group birefringence. It is composed of a solid silica core and a cladding with helix-pattern air holes. Using a full-vector finite-element method, we study the phase and group modal birefringence of such PCF at various air-hole sizes, pitches and wavelengths. Owing to this innovative structure of air holes, a high phase to group modal birefringence rate is obtained. Its phase modal birefringence is as large as 10−4 magnitude; however, the group modal birefringence of this PCF is at 10−7-10−6. The phase birefringence is 2 orders of magnitude larger than group birefringence over a broad wavelength span, which means that the light with different polarization and effective index has almost a same group velocity. As a result, the group modal birefringence that closely relates to the polarization modal dispersion is negligible.  相似文献   

13.
Recently, Rogers' dilogarithm identities have attracted much attention in the setting of conformal field theory as well as lattice model calculations. One of the connecting threads is an identity of Richmond-Szekeres that appeared in the computation of central charges in conformal field theory. We show that the Richmond-Szekeres identity and its extension by Kirillov-Reshetikhin (equivalent to an identity found earlier by Lewin) can be interpreted as a lift of a generator of the third integral homology of a finite cyclic subgroup sitting inside the projective special linear group of all 2×2 real matrices viewed as adiscrete group. This connection allows us to clarify a few of the assertions and conjectures stated in the work of Nahm-Recknagel-Terhoven concerning the role of algebraic K-theory and Thurston's program on hyperbolic 3-manifolds. Specifically, it is not related to hyperbolic 3-manifolds as suggested but is more appropriately related to the group manifold of the universal covering group of the projective special linear group of all 2×2 real matrices viewed as a topological group. This also resolves the weaker version of the conjecture as formulated by Kirillov. We end with a summary of a number of open conjectures on the mathematical side.To Professor C. N. Yang for his 70th birthdayThis work was partially supported by grants from the Statens Naturvidenskabelige Forskningsraad and the Paul and Gabriella Rosenbaum Foundation  相似文献   

14.
The concept of an effect test space, which is equivalent to a D-test space of Dvurečenskij and Pulmannová, is introduced. Connections between effect test space. (E-test space, for short) morphisms, and event-morphisms as well as between algebraic E-test spaces and effect algebras, are studied. Bimorphisms and E-test space tensor products are considered. It is shown that any E-test space admits a unique (up to an isomorphism) universal group and that this group, considered as a test group, determines the E-test space uniquely (up to an isomorphism).  相似文献   

15.
Symmetries in quantum mechanics are realized by the projective representations of the Lie group as physical states are defined only up to a phase. A cornerstone theorem shows that these representations are equivalent to the unitary representations of the central extension of the group. The formulation of the inertial states of special relativistic quantum mechanics as the projective representations of the inhomogeneous Lorentz group, and its nonrelativistic limit in terms of the Galilei group, are fundamental examples. Interestingly, neither of these symmetries include the Weyl–Heisenberg group; the hermitian representations of its algebra are the Heisenberg commutation relations that are a foundation of quantum mechanics. The Weyl–Heisenberg group is a one dimensional central extension of the abelian group and its unitary representations are therefore a particular projective representation of the abelian group of translations on phase space. A theorem involving the automorphism group shows that the maximal symmetry that leaves the Heisenberg commutation relations invariant is essentially a projective representation of the inhomogeneous symplectic group. In the nonrelativistic domain, we must also have invariance of Newtonian time. This reduces the symmetry group to the inhomogeneous Hamilton group that is a local noninertial symmetry of the Hamilton equations. The projective representations of these groups are calculated using the Mackey theorems for the general case of a nonabelian normal subgroup.  相似文献   

16.
The paper is devoted to generalization of the theory of loop groups to the two-dimensional case. To every complex Riemann surface we assign a central extension of the group of smooth maps from this surface to a simple complex Lie group G by the Jacobian of this surface. This extension is topologically nontrivial, as in the loop group case. Orbits of coadjoint representation of this extension correspond to equivalence classes of holomorphic principalG-bundles over the surface. When the surface is the torus (elliptic curve), classification of coadjoint orbits is related to linear difference equations in one variable, and to classification of conjugacy classes in the loop group. We study integral orbits, for which the Kirillov-Kostant form is a curvature form for some principal torus bundle. The number of such orbits for a given level is finite, as in the loop group case; conjecturedly, they correspond to analogues of integrable modules occurring in conformal field theory.  相似文献   

17.
The contraction of the Poincaré group with respect to the space translations subgroup gives rise to a group that bears a certain duality relation to the Galilei group, that is, the contraction limit of the Poincaré group with respect to the time translations subgroup. In view of this duality, we call the former the dual Galilei group. A rather remarkable feature of the dual Galilei group is that the time translations constitute a central subgroup. Therewith, in unitary irreducible representations (UIRs) of the group, the Hamiltonian appears as a Casimir operator proportional to the identity H = EI, with E (and a spin value s) uniquely characterizing the representation. Hence, a physical system characterized by a UIR of the dual Galilei group displays no non-trivial time evolution. Moreover, the combined U(1) gauge group and the dual Galilei group underlie a non-relativistic limit of Maxwell’s equations known as the electric limit. The analysis presented here shows that only electrostatics is possible for the electric limit, wholly in harmony with the trivial nature of time evolution governed by the dual Galilei group.  相似文献   

18.
We introduce the notion of a braided group. This is analogous to a supergroup with Bose-Fermi statistics ±1 replaced by braid statistics. We show that every algebraic quantum field theory in two dimensions leads to a braided group of internal symmetries. Every quantum group can be viewed as a braided group.  相似文献   

19.
The action of the transformations of a point group of a rigid molecule in a specified electronic state on the instantaneous nuclear configuration of the molecule is considered. This action is shown to be equivalent to permutations of identical nuclei in the effective potential of interaction of the nuclei in this state, which is invariant with respect to the transformations of the point group. Therefore, the point group characterizing the electronic state should be used as the rigorous symmetry group of the total electronic-vibrational-rotational motion.  相似文献   

20.
导出了C3v群在不同对称操作规定下的两个乘法表,说明点群的乘法表在不同规定下有不同形式;并以C3v群为例给出Cnv群中Cnm操作与Cnn-m操作共轭的一个直观的解释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号