首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photocleavage of the CBr bond in bromoacetylnaphthalene is investigated by transient absorption and time resolved EPR spectroscopy. In the transient absorption of 2-bromo-2′-acetylnaphthalene, the absorption band observed at λmax ~440 nm is assigned to the triplet state of the parent molecule. After decay of the triplet absorption, a long lived absorption band is observed at λmax ~380 nm, which is assigned to naphthoylmethyl radical. The yield of this radical is not dependent on the concentration of oxygen even though the absorption band of the triplet state was quenched by addition of oxygen. Thus we conclude that the spin multiplicity of the precursor molecule is singlet. The CW time resolved EPR spectrum shows a typical E?/A CIDEP pattern of three hyperfine lines of the naphthoylmethyl radical. This result suggests some contribution from triplet precursor molecules. However, a careful analysis of the time profile of the CIDEP intensity observed by FT-EPR revealed that the polarization is generated from the radical pair mechanism (RPM) from the encountered pair of two free naphthoylmethyl radicals and the radical-triplet pair mechanism. RPM polarization by the geminate radical pair, formed by the Br atom and the naphthoylmethyl radical, is not observed. This fact indicates that large spin-orbit coupling (Δg and/or fast spin relaxation by g anisotropy) spoils the RPM polarization. The finding is in contrast to the recent observation of RPM polarization in the Cl cleavage reaction of 1-(chloromethyl)naphthalene.  相似文献   

2.
Chemically induced dynamic electron polarization (CIDEP) created in the quenching of triplet naphthalene by galvinoxyl were investigated by time-resolved Fourier-transform electron paramagnetic resonance (FT-EPR) measurements with monitoring a free induction decay signal of a pulsed microwave irradiation. Transient FT-EPR spectra of galvinoxyl with CIDEP were observed in various nonpolar solvents with different viscosity. A transient FT-EPR signal phase shows remarkable dependence on the viscosity: FT-EPR signal phases were absorption and emission in the solvents with low and high viscosity, respectively. Time evolutions of the FT-EPR signal of galvinoxyl were well simulated by a model of the radical-triplet pair mechanism (RTPM) for CIDEP. A sign of theJ value in the triplet naphthalene-galvinoxyl system in various solvents were discussed on the basis of the sign rule in the RTPM and the transient FT-EPR signal phase. One of possible explanation for the solvent viscosity dependence of the transient FT-EPR signal phase was pressented on the basis of hypothetical model of theJ value.  相似文献   

3.
A stochastic Liouville equation (SLE) was numerically solved to obtain pulsed Fourier-transform (FT) EPR spectra on a radical pair system created in a photo-induced chemical reaction. Numerical calculations were applied to the photo-chemical reaction of deuterated acetone and 2-propanol at low temperatures. In this reaction system, the antiphase structures of the EPR signals, so called spin-correlated radical pair (SCRP) signals of two identical isopropyl ketyl radicals and spin-polarized free isopropyl ketyl radicals were observed by FT-EPR and continuous wave time-resolved (CW TR) EPR techniques. In the present work, FT-EPR spectra of the antiphase structure signals of the radical pair themselves as well as spin-polarized free radical signals were simulated. Additionally, rising behavior of free radical signals polarized by the radical pair mechanism (RPM) was also clarified. Furthermore two-dimensional (2D) FT-EPR nutation spectra were simulated in the both cases with and without the radical pairs by the use of SLE. In these simulations, strong DC components in the nutation frequency dimension, were well reproduced as was obtained in experiments. It was shown that relaxation during the microwave pulse was essential for the appearance of the DC components.  相似文献   

4.
Quenching of the triplet excited state of molecular tryptophan by nitroxide radical in 1,4-dioxane and water solutions was investigated by means of time-resolved electron paramagnetic resonance (EPR) and Fourier-transform (FT)-EPR. The chemically induced dynamic electron polarization (CIDEP) signals with net emissive phase were recorded at these quenching events and were analyzed through radical-triplet pair mechanism. The CIDEP time profiles were well reproduced by Bloch and kinetic equations, assuming radical-triplet pair mechanism with the appropriate quenching rate constants. From a comparison of the simulation and the experiment, CIDEP enhancement factor in 1,4-dioxane was determined to be −30 × P eq, where P eq is the spin polarization of nitroxide at thermal equilibrium. Net emissive CIDEP was also observed by FT-EPR measurements on the nitroxide quenching of the triplet excited state of tryptophan residue in α-lactalbumin. Magnitude of CIDEP created in α-lactalbumin/nitroxide system depends on the pH condition of α-lactalbumin solution, which is related to protein folding dynamics. We argue the CIDEP mechanism at the α-lactalbumin surface and propose a possibility of a novel CIDEP method to probe a protein surface and structural changes.  相似文献   

5.
A Fourier transform electron paramagnetic resonance (FT-EPR) study was made of the photochemistry of 3,4-methylenedioxyphenol (sesamol, SEOH)) in aqueous solution. FT-EPR measurements show that in alkaline (pH 11) solution, pulsed-laser excitation of SECT leads to photoionization giving the hydrated electron and SEO free radical. Resonance signals from these paramagnetic species develop with instrument-controlled rise time. They exhibit a low-field emission/ high-field absorption (E/A) CIDEP pattern with the transition from emission to absorption occurring at the resonance of the hydrated electron. It is shown that the spin polarization stems from contributions from the ST0 radical pair mechanism (E/A) and triplet mechanism (A). From this it is concluded that photoionization of sesamol occurs via the triplet excited state. In neutral and acidic (pH 4–7) aqueous solution, photoexcitation generates SEO and cyclohexadienyl-type radicals. In this case, radicals grow in over a period of 1–2 μs and FT-EPR spectra display an E/A pattern with the inversion point in the center. The lowering of the pH of the solution apparently is accompanied by a strong reduction in the relative importance of photoionization. From the FT-EPR data it can be deduced that in neutral and acidic solutions the dominant reaction channel is H-atom transfer. In this respect, the photochemistry of sesamol differs from that of phenol andp-cresol. For these phenols the change in pH does not affect the appearance of the FT-EPR spectra. Apparently, the change in electronic structure caused by the methylenedioxy substituent strongly affects the excited state reactivity of sesamol.  相似文献   

6.
The spin dynamics of the duroquinone anion radical (DQ?-) generated by photoinduced electron transfer reactions from triplet eosin Y (3EY2-) to DQ have been studied by using transient absorption and pulsed EPR spectroscopy. Unusual net-absorptive electron spin polarization plus net-emissive polarization were observed, suggesting the production of the triplet exciplex or contact radical pair as the reaction intermediate. The kinetic parameters and intrinsic enhancement factors of the electron spin polarization were determined in various alcoholic solvents. The net-absorptive electron spin polarization was also observed in ethanol-water mixed solvents. The solvent effects on the radical yield are analysed on the basis of a stochastic Liouville equation established for the magnetic field effects on the radical yield. The zero-field splitting constants of the triplet exciplex are estimated from the solvent viscosity dependence of the enhancement factors due to spin-orbit coupling induced depopulation of the reaction intermediate.  相似文献   

7.
Chemically induced electron polarization (CIDEP) has been observed for the durosemiquinone radical anion generated in the flash photolysis of solutions of duroquinone in the presence of various amines. The initial polarization has been measured directly by using a fast response time-resolved E.S.R. spectrometer. The magnitude of polarization is shown to depend on amine concentration and identity, and the solvent medium. Conventional nanosecond flash photolysis has been used to measure duroquinone triplet lifetimes under various conditions. The results are discussed in terms of the triplet mechanism and the radical pair mechanism.  相似文献   

8.
Benzoquinone (BQ), deuterobenzoquinone (d4-BQ), and hydroquinone (BQH2) are investigated in ethylene glycol by means of direct detection fast time-resolved EPR spectroscopy after laser flash photolysis. The development of the magnetization as a function of time and magnetic field is obtained and analyzed in terms of the Bloch equations and hyperfine parameters. The signals are attributed to the semiquinones BQH(*) and d4-BQH(*). The presence of 1,2-dihydroxyethyl radicals during the photolysis of BQ and d(4)-BQ is verified. No alkyl radicals are observed in solutions of BQ with excess BQH2. Detailed analysis of the chemically induced dynamic electron polarization spectra with respect to their development in time shows that polarization patterns of the semiquinones can be traced back to a superposition of triplet mechanism and radical pair mechanism, the latter arising from geminate T-pairs. Hence, two independent pathways for polarization are assumed: reaction of triplet benzoquinone with ethylene glycol leads to the semiquinone and dihydroxyethyl radicals with all signals in emission, whereas the reaction of triplet BQ and BQH2 yields two semiquinones exhibiting both net emissive and multiplet emissive/absorptive intensity distributions.  相似文献   

9.
The mechanism of 4-chlorophenol (4CP) photolysis was investigated with the aid of Fourier Transform Electron Paramagnetic Resonance (FT-EPR) and pulsed-laser photolysis combined with High Performance Liquid Chromatography (HPLC) detection-of stable (diamagnetic) products. With FT-EPR transient free radicals produced by pulsed-laser excitation of solutions of 4CP in alcohols could be identified. Time profiles of the FT-EPR spectra provided information on reaction kinetics and Chemically Induced Dynamic, Electron Polarization (CIDEP) effects. It was found that 4CP photolysis in alcohols leads to the simultaneous formation of the phenoxyl radical and radicals produced by hydrogen abstraction from the solvent. CIDEP patterns establish that these radicals are formed in a reaction sequence involving a triplet state precursor and radical pair intermediate. Results of earlier transient optical absorption measurements indicate that the triplet precursor must be the carbene 4-oxocyclohexa-2,5-dienylidene. This assignment is supported by the finding that photolysis of quinone diazide in a hydrogen-donating solvent gives the same free radical products as those obtained from 4CP. The formation of the phenoxyl radical intermediate accounts for the finding that photolysis of deoxygenated solutions of 4CP in alcohols gives phenol as stable diamagnetic product. By contrast, photolysis of aerated and deoxygenated aqueous solutions of 4CP produces benzoquinone and hydroquinone as primary products, respectively.  相似文献   

10.
Free-radical signals of positive polarons in conjugated polymer chains and maleic anhydride (MA) anion radicals were registered in poly(3-octylthiophene) P3OT:MA and (poly[2,5-dimethoxy-1,4-phenylene-1,2-ethenylene-2-methoxy-5-(2-ethylhexyloxy)?C(1,4-phenylene-1,2-ethenylene)]) M3EH-PPV:MA blends in tetrahydrofuran (THF) solutions under ultraviolet flash photolysis (308?nm) by continuous-wave time-resolved electron spin resonance. Their emissive chemically induced dynamic electron polarization (CIDEP) originated mainly from excited triplet states (triplet mechanism of CIDEP) and partly by from the radical pair mechanism due to the singlet?Ctriplet mixing states. The observed M3EH-PPV polaron spectrum (g 0?=?2.0029) supports the supposition that the previously registered CIDEP spectra in P3DDT:MA blends (g 0?=?2.0021) can be attributed to the polaron signals instead of the possible solvate electron signal one.  相似文献   

11.
A method is described for measuring the absolute value of the spin polarization in a triplet state in solution through CIDEP observations of the radicals formed on its reaction, and through it the anisotropy of the rates of the spin-selective intersystem crossing process. A long-accepted equation concerned with triplet mechanism spin polarization is shown to be inadequate to reproduce observed behaviour, and evidence produced to suggest that the observed polarization is affected by radical relaxation. The method also allows determination of the absolute polarization in the radicals. A novel analysis of the relative contributions of TM and RPM processes to observed spectra provides further evidence for the conclusions.  相似文献   

12.
From time-resolved direct detection cw EPR with pulsed laser excitation, the photoinduced electron transfer and spin dynamics (CIDEP) in mixed zinc-tetraphenylporphyrin (ZnTPP)/benzo-1,4-quinone (BQ) ethanol solutions were determined as functions of temperature and BQ concentration. At lower temperatures the EPR spectra reveal that mixing of the S and T?1 states in the charge separated radical pair gains in importance relative to the ST0 mixing. Furthermore, at lower temperatures, the EPR spectra of the spin-correlated radical pairs of ZnTPP+ and BQ7 could also be observed. From the temperature/viscosity dependence of the electron transfer rates and of the polarization contributions from the triplet and radical pair mechanisms, deviations from a macroscopic diffusion behaviour are inferred at lower temperatures.  相似文献   

13.
Radicals generated photochemically from a covalently linked porphyrin-quinone donor-acceptor system dissolved in reversed micelles and isotropic solution have been studied by steady-state and time-resolved EPR spectroscopy. In these systems photoinducedintramolecular as well asintermolecular electron transfer processes occur which result in the formation of semiquinone radical anions and porphyrin radical cations. Disproportionation of the semiquinone leads to the formation of porphyrin-hydroquinone (and porphyrin-quinone). The porphyrin-hydroquinone is itself photoactive and reacts through the photoexcited triplet state of the porphyrin. Reduction of the porphyrin to the dihydro from — probablyvia hydrogen abstraction by the photoexcited porphyrin from the hydroquinone — appears to be the dominant reaction. Once formed the dihydrophyrin undergoes further similar photochemistry. Emissively polarized spectra are observed from these systems in steady-state EPR experiments. Timeresolved EPR indicates that this polarization is essentially due to the radical triplet pair mechanism.  相似文献   

14.
A Fourier transform EPR (FT-EPR) study was made of the photochemistry of [Re(R)(CO)3 (α-diimine)] and [Ru(E)(R)(CO)2(α-diimine)] complexes, where R = alkyl or benzyl, E = I or SnPh3, and α-diimine = 4,4′-dimethyl-2,2′-bipyridine (DMB) orN,N′-diisopropyl-1,4-diazabutadiene (iPr-DAB). Photoexcitation of these complexes leads to homolysis of the metal-alkyl (benzyl) bonds as evident from the detection of the spectra of the alkyl (benzyl) radicals. FT-EPR spectra display strong spin polarization effects attributed to Triplet Mechanism (TM) and Radical Pair Mechanism (RPM) Chemically Induced Dynamic Electron Polarization (CIDEP). CIDEP patterns point to bond dissociation via a triplet state precursor. For a number of complexes, spin polarization was found to exhibit unusually large solvent effects, whereas for one complex the CIDEP pattern proved to be sensitive to the wavelength of laser light used to initiate bond dissociation. These effects reflect the strong dependence of CIDEP on the character of the excited states involved in the photochemical reactions and contribute to the understanding of the reaction mechanism.  相似文献   

15.
A study has ben made of magnetic field effects (MFEs) on the reaction of the photoexcited triplet of 2-methyl-1,4-naphthoquinone (MNQ) in SDS micellar solution containing the 4-lauroylamino-TEMPO radical (L-R?) under magnetic fields below 1.75 T by a nanosecond laser flash photolysis technique. The triplet MNQ mainly underwent the hydrogen abstraction from an SDS molecule to give a radical pair. The lifetime of the radical pair increased with increasing magnetic field from 0 to 0.62 T. The escaped radical yield also increased from 0 to 1.75 T. The qualitative features of these MFEs were similar to those observed for the photo-reduction of MNQ in SDS micellar solution without L-R?, and these MFEs can be explained by the relaxation mechanism. However, it was found that L-R? affected the MFEs for this reaction in two ways: first, L-R? reacted with the triplet MNQ through H abstraction and/or electron transfer, and second, the spin relaxation of the radical pair was enhanced through the spin-spin interactions of the individual radical with L-R?.  相似文献   

16.
Laser flash-induced spin-polarized transient electron paramagnetic resonance (TREPR) spectra for bis(terpyridoxy)phosphorus(V) porphyrin in a nematic liquid crystal isotropic and in frozen solution are presented. At room temperature, two sequential spin-polarized TREPR spectra are observed. The first is consistent with the triplet state of a radical pair, while the later is assigned to the triplet state of the porphyrin formed by charge recombination. On the basis of the spectroscopic and redox properties of the terpyridine and porphyrin moieties it is proposed that electron transfer from the terpyridine to the excited phosphorus(V) porphyrin occurs. The lifetime of the radical pair is estimated to be of about 175 ns. At low temperature, the radical pair spectrumis no longer observed and the spin polarization pattern of the porphyrin triplet is dramatically different. This behavior is explained by postulating that the electron transfer is inhibited at low temperature because molecular motion is required to stabilize the radical pair. It is proposed that in the absence of this stabilization, the porphyrin triplet state is populated via spin-orbit coupling-mediated intersystem crossing from the excited singlet state.  相似文献   

17.
The cumyl radical system, which is created after laser flash irradiation oftrans-azocumene in benzene solution at room temperature, is investigated using time-resolved EPR spectroscopy. From the quantitative analysis of EPR time-profiles at different microwave powers the spin relaxation timesT 1=3.5±0.3 μs andT 2=2.5±0.1 μs are evaluated as well as the magnitude of the chemically induced electron polarization (CIDEP), which is generated by the radical pair mechanism (RPM). The geminate RPM polarization is found to be considerably smaller than the F-pair one, 32±2 and 48±5 in units of the Boltzmann polarization, respectively. This is attributed to an initial radical separation in the geminate pair, caused by the cleavage reaction. Besides cleavage, the photoexcitedtrans-azocumene also decays via isomerization to the thermally unstablecis-isomer, the lifetime of which is found to be 14±3 μs at 293 K in benzene, three times longer than in cyclohexane. The quantum yield of free radicals, escaping from the primary cage, is determined as 0.28±0.06 for the decay of the excitedtrans-azocumene and 0.18±0.04 for the thermal cleavage of thecis-isomer. The self-termination of cumyl radicals proceeds with a rate constant 2k t=7±1)·108 M?1s?1 in benzene at RT.  相似文献   

18.
The electron spin polarization (ESP) of triplet of the primary donor (3P) ofRhodopseudomonas viridis reaction centers (RCs) is anomalous at temperatures above 25 K, i.e. the steady-state ESP changes from AEEAAE to AEAEAE. Fast, time-resolved EPR measurements in solid solution and single crystals of RCs show that this phenomenon results most probably from fast anisotropic spin-lattice relaxation in the radical pair triplet state (k r≈ 5·109s?1 at 25 K).  相似文献   

19.
1-乙酰基-2,3-吲哚二酮的光诱导氢转移反应的CIDNP研究   总被引:1,自引:0,他引:1  
采用CIDNP方法对UV光照条件下的1-乙酰基-2, 3-吲哚二酮与几类氢给体的光诱导氢转移反应进行了研究.  相似文献   

20.
The time-resolved electron paramagnetic resonance (EPR) spectra are studied in the temperature range of 110–300 K for two mixed solutions of porphyrins, ZnTPP and H2TPP, in toluene and the stable free radical 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO). The EPR spectra and their kinetic behavior were studied for concentrations of TEMPO varied in the interval from 0.51 to 7.68 mM, while the porphyrin concentration was fixed as 1 mM. The EPR spectra of triplet-state porphyrins and free radicals manifest the chemically induced spin polarization. For the relatively short-lived radical-triplet pairs, with the perturbation theory up to the fourth order, the theoretical expressions are obtained for the triplet and radical spin polarization induced by the enhanced intersystem crossing (ISC) due to the interaction of excited singlet-state porphyrins with free radicals and by the triplet quenching by free radicals. The time-dependent EPR spectra of the triplets are simulated taking into account the spin-lattice relaxation. It is shown that the variation of the triplet EPR spectra shape, when the time of observation increases, arises from the spin-lattice relaxation kinetics. The kinetic behavior of the TEMPO EPR spectrum was simulated on the basis of the kinetic scheme suggested earlier in the literature. The triplet spin-lattice relaxation time, the rate of the ISC and the lifetime of the excited singlet state were estimated by fitting the kinetic curves for the triplet EPR spectra intensity. For the mixed porphyrin-TEMPO solutions, a possible set of the rate constants of important bimolecular processes were determined. For this set of parameters, it turns out that the spin polarization transfer has a smaller rate constant than the rate constant of the diffusion collisions of the triplet and radical. It appears that the rate constant of the ISC catalyzed by radicals is relatively high in the solutions close to the melting point of the solvent and in the soft-glassy state. In the triplet porphyrins the initial spin polarization induced by the spin-selective ISC was found to exceed the equilibrium spin polarization by up to two orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号