首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cubic and quartic force fields of the title compounds are determined from ab initio SCF calculations using 6-31G** and TZP/TZ2P basis sets. The computed geometries, vibration-rotation interaction constants, l-doubling constants, anharmonicity constants, and vibrational wavenumbers are compared with the available experimental data, especially for PH3 and PF3. Many experimentally unknown spectroscopic constants are predicted. A scaling procedure based on calculated harmonic and anharmonic force fields is proposed for predicting the vibrational wavenumbers of unknown molecules such as PH5.  相似文献   

2.
Ashok Kumar 《Molecular physics》2013,111(10):1657-1663
Experimental and theoretical photoabsorption cross sections combined with constraints provided by the Kuhn–Reiche–Thomas sum rule, the high-energy behaviour of the dipole oscillator strength density, static dipole polarisabilities, and molar refractivity data when available are used to construct dipole oscillator strength distributions for PH3, PF3, PF5, PCl3, SiCl4, GeCl4, and SnCl4. The distributions are used to predict dipole sum rules S(k), mean excitation energies I(k), and van der Waals C6 coefficients.  相似文献   

3.
Electron energy loss Spectroscopy has been used to obtain the inner shell excitation spectra of PF5, OPF3 and OPCl3 in the P 2p,2s (L-shell) region as well as in the respective ligand K shell (F 1s, O 1s) and L shell (Cl 2p and 2s) regions. The spectra are compared and contrasted with earlier reported spectra obtained on the trivalent phosphorus compounds (PH3, PCl3, PF3 and P(CH3)3). The spectra were obtained using an impact energy of 2.5keV and a scattering angle of about 1°. The spectra reported here are typical of molecules with electronegative ligands in that the discrete portions of the spectra show strong transitions to virtual molecular orbitais. In addition, intense features are observed at or just beyond the ionization edge attributable to transitions to trapped inner well states, while broad features further into the continuum can be ascribed to σ*(P—L) shape-resonances (L = ligand). This resonance assignment was supported by a comparison with the corresponding spectra for PF3 and PCl3.  相似文献   

4.
Dielectric properties of the new [NH(CH3)3]2ZnCl4 and [NH(CH3)3]2CdCl4 crystals from the [(CH3) n NH4-n ]2MeCl4 group have been investigated in a wide temperature range (4.2–320 K). A series of phase transitions has been discovered at T3 = 325 K,T4 = 251 K,T5 = 193 K, for [NH(CH3)3]2CdCl4 and at T3 = 309 K, T4 = 282 K, T5 = 269 K for [NH(CH3)3]2ZnCl4. A ferroelectric phase has been discovered in the temperature interval T4—T5 from the temperature and frequency dependence of the dielectric permittivity ε(T, v). According to optical investigations the existence of ferroelastic phases in the temperature interval T1 = 349 K–T2 = 391 K and below T5 for [NH(CH3)3]2CdCl4 and both above T3 and below T5 for [NH(CH3)3]2ZnCl4 has been ascertained.  相似文献   

5.
A series of metal‐free compounds, ie, planar triprotonated triazine, triazineH3Cl(PF6)2 ( 1 ), planar triprotonated triazineH3Br(PF6)2 ( 2 ), and nonplanar monoprotonated triazineHPF6 ( 3 ), were prepared. Abbreviations used are triazine = tri‐2‐pyridyltriazine. Ruthenium complexes [RuCl(bpy)(L)](PF6), [RuCl(bpy)(L)](PF6)2, and [Ru(L)2](PF6)2 were also prepared, where bpy is 2,2′‐bipyridine and L's are triazine ( 4 ) and monoprotonated triazine ( 5 ), respectively. Ruthenium complexes [Ru(triazine)2](PF6)2 ( 6 ) were also prepared and crystallized. The X‐ray crystal structures of the 3 compounds 1 , 2 , and 3 and the complex 6 were determined. They were also characterized by electrospray ionization mass spectrometry, UV‐vis spectroscopy, and density functional theory calculations.  相似文献   

6.
The crystal structure of [C(NH2)3]2HgBr4 has been determined at room temperature: monoclinic, space group C2/c, with a = 10.035(2), b = 11.164(2), c = 13.358(3) Å, β = 111.67(3)°, and Z = 4. The crystal consists of planar [C(NH2)3]+ and distorted tetrahedral [HgBr4]2? ions. The Hg atom is located on a two-fold axis such that two sets of inequivalent Br atoms exist in an [HgBr4]2? ion. In accordance with the crystal structure, two 81Br NQR lines widely separated in frequency were observed between 77 and ca. 380 K. [C(NH2)3]2HgI4 yielded four 127I NQR lines ascribable to m = ±1/2 ? ±3/2 transitions, indicating that its crystal structure is different from the bromide complex. The 1H NMR T 1 measurements showed a single minimum for the bromide but two minima for the iodide. The analyses based on the C3 reorientations of the planar [C(NH2)3]+ ions gave the activation energies of 29.8 kJ mol?1 for the bromide, and 30.2 and 40.0 kJ mol?1 for the iodide.  相似文献   

7.
The dynamics of the intramolecular electron transfer from Ru(II) to Ru(III) in binuclear mixed-valence complexes [NH3)5Ru -L-Ru(NH3)5]5+ (L = N2, pyz, bipy, pym, bpa) is analyzed by the semiempirical CINDO + CI method. Translated from ZhurnalStruktumoi Khimii, Vol. 39, No. 4, pp. 579–590, July–August, 1998.  相似文献   

8.
Second order rate constants are reported for the reactions of metal carbonyl anions ([M(CO)nL]?) with several vinyl halides: PhCCl?C(CN)2, Z‐ and E‐Ph(CN)C?CHHal (Hal = Cl, Br) which follow the addition–elimination (AdNE) substitution mechanism. The obtained data show that the nucleophilic reactivity of [M(CO)nL]? anions towards vinyl halides increases in the same order as in aliphatic SN2 reactions, but much more steeply, by 14 orders of magnitude in the row log{ }: [CpFe(CO)2]? (~14), [Re(CO)5]? (7.8), [Mn(CO)5]? 2.1, [CpW(CO)3]? (0.7) > [CpMo(CO)3]? (0). A good correlation exists between nucleophilicities of [M(CO)nL]? anions towards vinyl (sp2‐carbon) and alkyl halides (sp3‐carbon) with slope 2.7. The reactivity of [M(CO)nL]? in a halogen–metal exchange process (with Z‐PhC(CN)?CHI) follows a similar ‘large’ scale as in the AdNE process. The nucleophilicity of [M(CO)nL]? anions correlates better with their one‐electron oxidation potentials (Eox) than with their basicity (pKa of [M(CO)nL]H). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The coadsorption of PH3 with H2, D2, O2 and H2O on Rh(100) has been studied using temperature programmed desorption (TPD), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The adsorption and molecular desorption of PH3 is not affected by preadsorbed H2, D2 and O2. Preadsorbed PH3 blocks H2 desorption sites while postdosed PH3 displaces H2 (D21) from the Rh(100). When D2 and PH3 are coadsorbed, no D appears in desorbed phosphine. Preadsorbed O2 reduces the amount of H2 desorption (from PH3 decomposition) and increases the H2 desorption temperature. There is also some reaction between O(a) and H(a) to form water. Preexposure to H2O decreases the extent of PH3 adsorption and of PH3 decomposition.  相似文献   

10.
Abstract

The infrared spectra (4000 - 50 cm?1) of the square planar rhodium(I) complexes cis-[Rh(CO)2 (pyridine) (X)] (X = Cl, Br) and their isotopomers with pyridine-d 5 and 13CO have been determined. Assignments are based on earlier studies on pyridine and its complexes and on the shifts in infrared bands which are caused by the isotopic substitutions employed. Normal coordinate analysis following the procedure of Becher and Mattes has been used to confirm the empirical assignments. The two v(RhC) bands are observed near 490 and 450 cm?1. v(RhN) is found near 210 cm?1 and v(RhX) occurs at 310 (X = Cl) and 235 (X = Br) cm?1. At frequencies below 200 cm?1, the bands are assigned to bending modes in the following sequence: δ (RhN) > δ (CRhC) > δ (RhCl) > γ (RhCl) > γ (RhN).  相似文献   

11.
Electron energy loss Spectroscopy has been used to obtain the inner shell electronic excitation spectra of PH3, PF3, PCl3 and P(CH3)3 in the phosphorus L-shell (P 2p, 2s) region as well as the respective ligand K -shells (F 1s, C 1s) and L-shell (Cl 2p and 2s) regions. The spectra were obtained under small momentum transfer conditions so that dipole-allowed transitions dominate. An impact energy of 2.5 ke V was used and inelastically scattered electrons were detected at a typical scattering angle of about 1°. A dipoleforbidden transition of unusual character is observed at 135.11 eV in the P 2p spectrum of PCl3. Although optically forbidden, as indicated by its absence in a soft X-ray absorption spectrum, the intensity of this transition rises very rapidly with increase in momentum transfer.  相似文献   

12.
Copper(I) complexes of the formula [Cu(L)(PPh3)2]X (1–4) (X = Cl(1), ClO4(2), BF4(3) and PF6(4)) [where L = N-(2-{[(2E)-2-(4-nitrobenzylidenyl)hydrazinyl]carbonyl}phenyl)benzamide; PPh3 = triphenylphosphine] have been prepared by the condensation of N-[2-(hydrazinocarbonyl)phenyl]benzamide with 4-nitrobenzaldehyde followed by the reaction with CuCl, [Cu(MeCN)4]ClO4, [Cu(MeCN)4]BF4 and [Cu(MeCN)4]PF6 in presence of triphenylphosphine as a coligand. Complexes 1–4 were then characterized by elemental analyses, FTIR, UV-visible and 1H NMR spectroscopy. Mononuclear copper(I) complexes 1–4 were formed with L in its keto form by involvement of azomethine nitrogen and the carbonyl oxygen along with two PPh3 groups. A single crystal X-ray diffraction study of the representative complex [(Cu(L)(PPh3)2]CIO4 (2) reveals a distorted tetrahedral geometry around Cu(I). Crystal data of (2): space group = C2/c, a = 42.8596 (9) Å, b = 14.6207 (3) Å, c = 36.4643 (7) Å, V = 20,653.7 (7) Å3, Z = 16. Complexes 1–4 exhibit quasireversible redox behaviour corresponding to a Cu(I)/Cu(II) couple. All complexes show blue-green emission as a result of fluorescence from an intra-ligand charge transition (ILCT), ligand to ligand charge transfer transition (LLCT) or mixture of both. Significant increase in size of the counter anion shows marked effect on quantum efficiency and lifetime of the complexes in solution.  相似文献   

13.
The spin transition from a high-spin state to a low-spin state of Fe(III) ions in the compounds Fe(4-OCH3-SalEen)2 Y (Y = PF6, NO3) is investigated using the electron paramagnetic resonance (EPR) method. It is established that, unlike the compound with the PF6 anion, the compound with the NO3 anion is characterized by a temperature hysteresis of the properties of the spin transition. The thermodynamic characteristics of the spin transitions are determined from the EPR data. It is demonstrated that the specific features of the thermal evolution of the formation of the low-spin complexes are consistent with the domain model of the development of the spin transition. Original Russian Text ? T.A. Ivanova, I.V. Ovchinnikov, A.N. Turanov, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 11, pp. 2033–2038.  相似文献   

14.
The adsorption of cisplatin and its complexes, cis-[PtCl(NH3)2]+ and cis-[Pt(NH3)2]2+, on a SiO2(1 1 1) hydrated surface has been studied by the Atom Superposition and Electron Delocalization method. The adiabatic energy curves for the adsorption of the drug and its products on the delivery system were considered. The electronic structure and bonding analysis were also performed. The molecule-surface interactions are formed at expenses of the OH surface bonds. The more important interactions are the Cl-H bond for cis-[PtCl2(NH3)2] and cis-[PtCl(NH3)2]+ adsorptions, and the Pt-O interaction for cis-[Pt(NH3)2]2+ adsorption. The Cl p orbitals and Pt s, p y d orbitals of the molecule and its complexes, and the s H orbital and, the s and p orbitals of the O atoms of the hydrated surface are the main contribution to the surface bonds.  相似文献   

15.
81Br NQR frequencies and differential scanning calorimetry (DSC) were measured as a function of temperature. [NH3(CH2)4 NH3]CdBr4 (1) and [NH3(CH2)5NH3]CdBr4 (2) showed a doublet and quartet 81Br NQR spectrum, respectively. [NH3(CH2)5NH3]ZnBr4 (3) and [NH3(CH2)6NH3]ZnBr4 (4) exhibited a four-line 81Br NQR spectrum. From the NQR results, it is inferred that (1) and (2) consist of infinite two-dimensional sheets of corner-sharing CdBr6 octahedra, whereas (3) and (4) have isolated [ZnBr4]2− tetrahedra. All of the crystals except (1) showed at least one structural phase transition above 380 K.  相似文献   

16.
The compounds [3,3-(CO)2-3-NO-closo-3,1,2-ReC2B9H11] and [NEt4][3,3,3-(CO)3-8-I-closo-3,1,2-ReC2B9H10] have been shown to be emissive in MeTHF at 77 K, with λmax in the blue region of the visible spectrum. Emission from [3,3,3-(CO)3-8-I-closo-3,1,2-ReC2B9H10]-, which has been structurally characterized, is phosphorescent with a single exponential decay lifetime, τ=1.65 ms. The complex [3,3-(CO)2-3-NO-closo-3,1,2-ReC2B9H11] also emits in the solid state at 298 K and has been shown by diffuse-reflectance UV-vis measurement to have a band gap of 2.66 eV.  相似文献   

17.
Quasirelativstic and relativistic (four-component) versions of the CNDO (Complete Neglect of Differential Overlap) methods have been used in studying the electronic structure of octahedral2[CuF6]4–,2[AuF6]4– complexes and m [Cu6] q , m [Au6] q and m [Au6(PH3)6] q clusters for various charges,q, and spin multiplicities,m. A strong spin-orbit splitting of levels t1u in [Au6]2+ cluster removes the degeneracy of the ground electronic state3T1g into a nondegenerate state so that the Jahn-Teller instability disappears as a consequence of the relativistic effect. The phosphine ligands change the redox stability of the cluster as the orbital energies are shifted to higher values. On the contrary, the spin-orbit splitting of completely filled t2u levels in [AuF6]4– is irrelevant since the degeneracy of the ground electronic state2Eg (8g in the double group notation) remains unchanged. Consequently the Jahn-Teller instability of the octahedral geometry exists and thus a considerable tetragonal distortion appears.Part V: J. Quantum Chem.36 (1989) 727.  相似文献   

18.
Abstract

A series of Ru(II) complexes have been synthesized, and their electronic spectra and NMR spectroscopy properties were characterized. the chemical shifts of aromatic protons of [Ru(bpy)3] (PF6)2, [Ru(phen)3](ClO4)2 and [Ru(bqdi)3](PF6) move downfield, but the resonance peaks of cis-Ru(bpy)2Cl2 shift upfield. Within the visible spectra of the ruthenium(II) complexes appear a relatively high oscillator strength which is referred to as the π(Ru)→? (ligands) transition.  相似文献   

19.
Layered single crystals of the (BEDO-TTF)6[M(CN)6](H3O,CH3CN)2 (M = Fe, Cr) compounds with alternating conducting layers of BEDO-TTF and [M(CN)6](H3O,CH3CN)2 are studied. The contributions to the magnetic susceptibility from charge carriers in BEDO-TTF layers and from the subsystem of localized magnetic moments of iron (or chromium) transition metal complexes are separated for both compounds under investigation. It is revealed that the crystals with [Fe(CN))6]3− anions at a temperature of ∼80 K and the crystals with [Cr(CN))6]3− anions at ∼30 K undergo magnetic transitions which are accompanied by drastic changes in the parameters of the EPR lines associated with the BEDO-TTF layers and the subsystem of localized spins of transition metal complexes. It is established that the presence of the BEDO-TTF layers in the structure affects the magnetic properties of iron and chromium hexacyanide complexes. Original Russian Text ? R.B. Morgunov, E.V. Kurganova, T.G. Prokhorova, E.B. Yagubskiĭ, S.V. Simonov, R.P. Shibaeva, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 4, pp. 657–663.  相似文献   

20.
Xiang J  Li H  Yang K  Yi L  Xu Y  Dang Q  Bai X 《Molecular diversity》2012,16(1):173-181

Abstract  

Highly substituted novel 4H-pyrimido[1,6-a] pyrimidines were prepared by a trifluoromethanesulfonic acid catalyzed one-pot three-component condensation of 4-aminopyrimidines, aldehydes, and β-ketoesters. A preliminary feasibility study was undertaken on these compounds, to assess the potential production of a library of further diversified compounds by nucleophilic replacement of Cl (R1) or by reaction of electrophiles with the NH2 (R2) group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号