首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first part of this series focused on the calculation of the rovibrational states of H+ 3 in the energy region below 9000 cm?1, where most of the experimentally determined and assigned term values are located. The theoretically justified empirical correction for the non-adiabatic coupling corrections, which was obtained and tested in that study is extended and applied here in the calculation of the rovibrational states of H+ 3 to term values up to 13000 cm?1, which is above the barrier to linearity. In particular, predictions are made for the 5v 2 bands, which are the subject of current experimental investigations, hopefully aiding with our results in the assignment of the spectral lines observed.  相似文献   

2.
The excitation spectrum of BaO in the region above 32 000 cm−1 was investigated with a frequency-doubled pulsed dye laser. We have observed fully developed rotational structures of the C1Σ+-X1Σ+ transition. The analysis of the vibrational states v′ = 0 through 7 leads to a large number of perturbations. This spectroscopic information in combination with the observation and rotational analysis of transitions to several new electronic states allows a systematic summary, which gives more than eight electronic states in the investigated region. Besides the known states B, C, D and c, we find four new bound states, designated by E, F, G, and H. For all states molecular constants are given. The discussion of possible molecular electron configurations leads to classifications of the molecular electronic states. Our results on the vibrational levels v′ = 0 to 3 are in reasonable agreement to the optical-optical double resonance work of R. A. Gottscho, P. S. Weiss, and R. W. Field [J. Mol. Spectrosc. 82, 283–309 (1980)], but show several new details.  相似文献   

3.
The use of various approximations in calculating proton projected ranges has been studied by the analytical and the Monte Carlo methods. A correction is presented for the projected ranges given in the compilation (Andersen and Ziegler: Hydrogen Stopping Powers and Ranges in All Elements). The greatest correction factors at 1, 10, 100 and 1000 keV are 3.5, 2.1, 1.4 and 1.2, respectively. The corrections result from the inclusion of the tabulated electronic stopping power values in the calculation of the projected ránge to the total range ratio and from the estimation of the effect of the reflection. The Monte Carlo calculations show the electronic straggling to be a remarkable factor in the width of the proton range distributions at reduced energies larger than of the order of 100.  相似文献   

4.
Infrared spectra of deuterated monofluoroacetylene, DCCF, have been recorded in the region between 320 and 850 cm?1 at an effective resolution ranging from 0.0024 to 0.0031 cm?1. In total, 6650 rotation vibration transitions were assigned to 37 bands involving the bending states with v4 + v5 and |l4+l5|, respectively, up to 3, allowing the characterisation of the ground state and of 18 vibrationally excited states. The vν5 bending fundamental has been studied for the first time. In addition, the difference band v3v4 has been detected and analysed. All the assigned transitions have been fitted simultaneously by adopting a model Hamiltonian that takes into account the vibration and rotation l?type resonances. Rotational transitions in the ground and in bending excited states reported in the literature have been included in the global analysis. The set of 57 derived spectroscopic parameters reproduces 6130 infrared and 90 microwave and millimetre?wave transitions satisfactorily with root mean square values of 5.3 × 10?4 cm?1 and 77 kHz, respectively.  相似文献   

5.
Carbon monosulfide was detected in outer space by rovibrational spectroscopy of the X 1Σ+ state and A 1Π – X 1Σ+ system. This work calculated the potential energy curves and dipole moment functions of the X 1Σ+ 0+ and A 1Π1 states, and computed the transition dipole moments between the two states employing the CASSCF method, followed by the valence icMRCI approach. Core-valence correlation and scalar relativistic corrections were included. The extrapolation of potential energies to the complete basis set limit was performed. The spin-orbit coupling effect was included. The Einstein A coefficients, band origins, and oscillator strengths were calculated for the rovibrational transitions when J?≤?150. The rovibrational transitions of the X 1Σ+ 0+ and A 1Π1 states became very weak when Δυ?≥?6. The Einstein A coefficients of vibronic emissions of the A 1Π1 – X 1Σ+ 0+ system were large, indicating that the emissions were able to be measured easily through spectroscopy. Several rovibrational transitions of the A 1Π1 – X 1Σ+ 0+ system were analysed in detail. The distribution of radiative lifetime varying as rotational quantum number was calculated. The results obtained in this work agree well with the available experimental values.  相似文献   

6.
7.
Three infrared active fundamental bands of cis-d2-ethylene have been studied at a resolution of ca. 0.030 cm−1: the type-c band ν7 and the two type-a bands ν6 and ν12. From a simultaneous analysis of infrared ground state combination differences due to ν7 together with microwave measurements, a set of ground state rotational and centrifugal distortion constants has been obtained. For all three bands upper state spectroscopic constants are determined, and perturbations are identified. The Ka = 4 level in ν7 is perturbed locally by a higher order c-Coriolis resonance with ν8. ν6 is globally perturbed by first-order a-Coriolis resonances with ν4 and ν8. For ν12 a higher order c-type Coriolis resonance with 2ν10 is of importance for several Ka levels, and the constants for ν12 have been obtained taking this interaction into account. In addition, a Coriolis resonance parameter and some constants for 2ν10 have been determined.  相似文献   

8.
The pure rotational spectrum of the near-spherical oblate symmetric top AsD3 has been recorded in the 20–120cm?′ region with a resolution of 2.3 × 10?3 m?1 employing an FT interferometer. Rotational transitions with 5 ? J ? 29 and 0 ? X ? 25 of the ground state (GS) and the v2 = 1 and v4 = 1 excited states have been assigned. Splittings were observed for the GS, 98, K = 3 and 6 levels, the K = 3 levels of v2 and the kl = ?2, 1, 4 and 7 levels of v4. Furthermore the x,y Coriolis coupled v2 and v4 bands, v 0 2 = 654.4149cm?1, and v 0 4 = 714.3399 cm?1, have been examined with a resolution of 2.4 × 10?3 cm?1, and ca. 2500 allowed and 336 ‘forbidden’ lines with J′max = 31 and K′max = 28 have been assigned. Appropriately weighted GS data comprising FIR lines, allowed and ‘forbidden’ (up to ΔK = ±6) GS combination differences, mmw data, and ΔJ = 0, ΔK = ±1 distortion moment transitions were fitted together, and GS parameters complete through H parameters have been determined. Two different reductions of the Hamiltonian, either with ΔK = ±6 (h3) or ΔK = ±3 (ε) off-diagonal elements, have been employed. Equivalence of these reductions up to J = 22 was established while for J > 22 the ε reduction is superior. The v2 and v4 data have been fitted with two equivalent models based on different reductions of the rovibrational Hamiltonian. In addition to the dominating x,y Coriolis resonance, ζ y 24 0.520, Δ(k ? l) = ±3 and ±6 interactions are important and were accounted for by the models. The transition moment ratio |M4: M2| =0.75 has been determined, with a positive sign of the product M 2ζ y 24 M 4. An improved r0 structure, r0(AsD) = 1.51753 Å and α0(DAsD) = 92.000°, has been determined.  相似文献   

9.
The absorption spectrum of 12C2H2 has been recorded by intracavity laser absorption spectroscopy (ICLAS) in the 10600–11 500 cm?1 spectral region, where no absorption bands were previously reported. Fifteen bands starting from the vibrational ground state are observed and rotationally analysed. All corresponding excited vibrational levels were assigned using the polyad model, the so-called cluster model (El Idrissi, M.I., Liévin, J., Campargue, A., and Herman, M., 1999, J. chem. Phys., 110, 2074) which allows vibrational energies, rotational Bv constants and, to some respect, relative band intensities to be predicted. Additional data and constants are also provided in the range 7600–9200cm?1, whenever improving the literature results, from spectra recorded previously at ULB using Fourier transform spectroscopy. The assignment procedure in the range recorded by ICLAS is detailed, leading to a deeper understanding of vibration-rotation and intensity features of the absorption bands within the frame of the cluster model.  相似文献   

10.
The g factors of rovibrational levels of the (4d)r 3Π g ? and (4d)s 3Δ g ? states of the H2 and D2 molecules have been obtained for the first time. These values were found within the nonadiabatic model taking into account the interaction of the 4dπ3Πg and 4dδ3Δg states in the pure precession approximation using semiempirical values of the expansion coefficients of the wave function in an adiabatic basis, which was obtained for the first time for the states of the triplet 4d complex of terms of the hydrogen molecules, and the results of numerical calculation of the overlap integrals of the vibrational wave functions of these states. It is established that the interference effects of the interaction between the 4dπ3Π g ? and 4dδ3Δ g ? states lead to significant (up to 7 times for the r 3Π g ? state of the H2 and D2 molecules and 70 and 8 times for the s 3Δ g ? state of the H2 and D2 molecules, respectively) differences between the nonadiabatic values of the g factors and the corresponding adiabatic values. It is found that the perturbed values of the g factors are much closer to the values corresponding to the case of Hund’s d coupling of angular momenta than to the values corresponding to the b coupling. It is established that the perturbations of the g factors of rovibrational levels of the states of the 4d complex of terms are much greater (up to 2 times for the 3Π g ? states and 350 times for the 3Δ g ? states) than the perturbations of the same characteristics for the 3d complex of terms of the hydrogen molecule with the same vibrational and rotational quantum numbers.  相似文献   

11.
Abstract

Since what appears to be the first infrared (IR) observation of a char by Kmetko in 1951,1 IR spectra of coals, chars and various carbon materials have been invariably shown to have a more or less intense band near 1600 cm?1. A variety of suggestions has been made concerning the cause of the band but the assignments have been in dispute and remained controversial for thirty years.  相似文献   

12.
Fourier transform spectra of ethylene (C2H4) have been recorded in the 1800–2350?cm?1 (4.3–5.6?µm) spectral region using a Bruker IFS125HR spectrometer at a resolution of 0.004?cm?1 leading to the observation of six vibrational bands, ν 7?+?ν 8, ν 4?+?ν 8, ν 6?+?ν 10, ν 6?+?ν 7, ν 4?+?ν 6 and ν 3?+?ν 10. The corresponding upper state ro-vibrational levels were fit using a Hamiltonian matrix accounting for numerous interactions. A satisfactory fit could be obtained using a polyad of nine interacting states {81101,?7181,?4181,?81121,?61101,?6171,?4161,?31101,?3171} of which three (81101, 81121 and 3171) are unobserved dark states. As a result a much more accurate and extended set of Hamiltonian constants were obtained than previously derived. The following band centers were determined: ν 0(ν 7?+?ν 8)?=?1888.9783(20)?cm?1, ν 0(ν 4?+?ν 8)?=?1958.2850(20)?cm?1, ν 0(ν 6?+?ν 10)?=?2047.7589(20)?cm?1, ν 0(ν 6?+?ν 7)?=?2178.011(60)?cm?1, ν 0(ν 4?+?ν 6)?=?2252.8026(24)?cm?1 and ν 0(ν 3?+?ν 10)?=?2171.2397(20)?cm?1. Finally, a synthetic spectrum that could be useful for ethylene detection in planetary atmospheres was generated.  相似文献   

13.
14.
15.
《Infrared physics》1985,25(1-2):251-253
In our systematic investigation of the FTS of CH3OH we have assigned about 3000 lines connecting levels of the vibrational ground state with frequencies between 8 and 80 cm−1. Here we present the parameters for Taylor expansions of the energy levels in J(J + 1) which allow us to reconstruct the spectral lines with a precision usually of the order of 10−4cm−1.  相似文献   

16.
Abstract

The assignment of a band near 1600 cm?1 in IR spectra of carbons has been controversial for four decades. However, many different carbons have been studied: effectively, a single band assignment was sought for an absorption appearing with three different classes of carbon. As these differ in over-all structure, not one but three explanations are needed. These are discussed. However, undue emphasis has been placed on a single absorption; attention should also be paid to other absorptions accompanying the 1600 cm?1 band.  相似文献   

17.
《Molecular physics》2012,110(21-22):2621-2632
The vibration–rotation spectra of 13C substituted acetylene, 13C2H2, have been recorded in the region between 60 and 2600?cm?1 at an effective resolution ranging from 0.001 to 0.006?cm?1. Three different instruments were used to collect the experimental data in the extended spectral interval investigated. In total 9529 rotation vibration transitions have been assigned to 101 bands involving the bending states up to v tot?=?v 4?+?v 5?=?4, allowing the characterization of the ground state and of 33 vibrationally excited states. All the bands involving states up to v tot?=?3 have been analyzed simultaneously by adopting a model Hamiltonian which takes into account the vibration and rotation l-type resonances. The derived spectroscopic parameters reproduce the transition wavenumbers with a RMS value of the order of the experimental uncertainty. Using the same model, larger discrepancies between observed and calculated values have been obtained for transitions involving states with v tot?=?4. These could be satisfactorily reproduced only by adopting a set of effective constants for each vibrational manifold, in addition to the previously determined parameters, which were constrained in the analysis.  相似文献   

18.
19.
20.
Detailed regions of the near infrared spectrum of propyne between 12737 cm-1 and 12778cm-1 have been measured using a simple and inexpensive home-made laser diode spectrometer. This part of the spectrum covers the overlapping 3v1 + v3 + v5 and 3v1 + v3 + v5 + v10—v10 bands. Combining a global fit and an individual profile analysis made possible the determination of the vibrational and rotational constants in each band and in some cases the resolution of the individual K structure in each transition cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号