首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Raman spectra of the totally symmetric A g modes, v 1, v 2 and v 3, of the N2O4 molecule have been measured in the liquid state at 262, 279 and 297 K. The vibrational and the rotational correlation functions are calculated. The long-time exponential decay of the rotational correlation functions of all the A g modes reflects an asymptotic diffusional behaviour of molecular reorientation. The rotational relaxation rate is found to increase with increasing temperature. A marked point of inflection from the short time inertial correlation to the long time exponential decay appears at about 0·35 ps for the v 2 mode. This is an indication of orientational rebound arising from the librational motion in a temporary solvent cage. The isotropic bandwidth increases in the order v 1 < v 2 < v 3, which is also the order of decreasing vibrational frequency. The temperature dependence of the peak frequency and of the bandwidth are also found to increase in the same order. These observations are analysed qualitatively in terms of two models of vibrational dephasing which take into account the effect of vibrational anharmonicity.  相似文献   

2.
Burkeite formation is important in saline evaporites and in pipe scales. Burkeite is an anhydrous sulphate-carbonate with an apparent variable anion ratio. Such a formula with two oxyanions lends itself to vibrational spectroscopy. Two symmetric sulphate stretching modes are observed, indicating at least at the molecular level the nonequivalence of the sulphate ions in the burkeite structure. The strong Raman band at 1065 cm?1 is assigned to the carbonate symmetric stretching vibration. The series of Raman bands at 622, 635, 645, and 704 cm?1 are assigned to the ν4 sulphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from T d to C 3v or even C 2v.  相似文献   

3.
In this study,our vibrational spectroscopic analysis is made on hydrogen-bonding between dimethyl sulfoxide and water comprises both experimental Raman spectra and ab initio calculations on structures of various dimethyl sulfoxide/water clusters with increasing water content.The Raman peak position of the v(S=O) stretching mode of dimethyl sulfoxide serves as a probe for monitoring the degree of hydrogen-bonding between dimethyl sulfoxide and water.In addition,the two vibrational modes,namely,the CH 3 symmetric stretching mode and the CH 3 asymmetric stretching mode have been analysed under different concentrations.We relate the computational results to the experimental vibrational wavenumber trends that are observed in our concentration-dependent Raman study.The combination of experimental Raman data with ab initio calculation leads to a better knowledge of the nature of the hydrogen bonding and the structures of the hydrogen-bonded complexes studied.  相似文献   

4.
The fine structure of the fundamental vibrational bands and some combination tones of fullerite C60 in its IR absorption and reflection spectra, as well as in Raman spectra, has been studied. This structure is due to the overlapping components of Davydov and isotopic splittings and the removal of vibrational degeneracy with symmetry lowering. It is shown that for IR F u (i) bands (i = 1–4) and low-frequency H g (1) and A g (1) bands in the Raman spectrum the splittings at room temperature exceed those for the low-temperature phase. The enhancement of intermolecular interaction at elevated temperatures is explained by the nonequilibrium vibrational excitation of the medium as a result of nonlinear interaction of vibrational modes and by the change in the electronic states.  相似文献   

5.
The molecular structures and vibrational properties of 1H‐imidazo[4,5‐b]pyridine in its monomeric and dimeric forms are analyzed and compared to the experimental results derived from the X‐ray diffraction (XRD), infrared (IR), and Raman studies. The theoretical data are discussed on the basis of density functional theory (DFT) quantum chemical calculations using Lee–Yang–Parr correlation functional (B3LYP) and 6‐31G(d,p) basis. This compound crystallizes in orthorhombic structure, space group Pna21(C2v9) and Z = 4. The planar conformation of the skeleton and presence of the N H···N hydrogen bond was found to be characteristic for the studied system. The temperature dependence of IR and Raman modes was studied in the range 4–294 K and 8–295 K, respectively. The normal modes, which are unique for the imidazopyridine derivatives are identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We report ultraviolet resonance Raman spectra of bromoform (CHBr3) in cyclohexane solution. The resonance Raman spectra show significant intensity in the overtones of the nominal Br-C-Br symmetric bend (v 6), the nominal H-C-Br asymmetric bend (v3), the nominal Br-C-Br symmetric stretch (v 2) and the nominal Br-C-Br asymmetric stretch (v 5) vibrational modes suggesting that the short-time photodissociation dynamics have noticeable multidimensional character. The lack of strong combination bands between several of the Franck-Condon active modes suggests that more than one electronic transition contribute to the resonance Raman spectra. We briefly discuss the ultraviolet short-time photodissociation dynamics of bromoform and the potential implications for the secondary photodissociation reactions of the initially formed CHBr2 radical.  相似文献   

7.
R P Singh  R N Singh 《Pramana》1988,30(3):217-223
The infrared and laser Raman spectra of 2, 3 dichloro aniline and 2, 6 dichloro aniline have been recorded. The vibrational spectra have been analysed assumingC s andC 2v point groups for 2, 3 dichloro aniline and 2, 6 dichloro aniline respectively. Assignments for fundamental vibrations, combination and overtone frequencies and internal modes of vibration of amino group have been proposed.  相似文献   

8.
Infrared matrix-isolation spectra are reported for the tropolone monomers C7H5O2H and C7H5O2D. Tropolone possesses an intramolecular hydrogen bond and the possibility for proton tunneling from one oxygen atom to the other. Clearcut multiplets attributed to tunneling are observed for the OD stretching mode and for heavy atom modes of both C7H5O2D and C7H5O2H. The (mixed) carbonyl stretching mode particularly seems to facilitate tunneling from one conformation to the other. The tunneling phenomena suggests that tropolone monomer has nearly C2v symmetry. As a crude estimate, the tunneling potential energy barrier is calculated to be less than 5600 cm?1 in the ground electronic state of C7H5O2D. The barrier is lower in the Π1 electronic state than in the ground electronic state. A vibrational assignment that encompasses most of the 39 fundamental modes is proposed. The vibrations are classified using C2v symmetry species and a parallel vibrational analysis is presented for tropone, C7H6O, which is a true C2v molecule.  相似文献   

9.
Experimental results are reported from polarized and depolarized Raman intensity measurements in combination with absolute depolarized Rayleigh ratios of liquid CS2 in CCl4 mixtures at 25°C. Using a calibrated Raman spectrometer it was possible to determine the concentration dependence of g 2 · γ2 eff of CS2. Intensity measurements of the polarized and depolarized Raman spectra of the symmetric stretching vibration of CS2 under the same conditions allowed the determination of the effective values of α01 and γ01 respectively to the normal mode Σ+ g in the liquid phase. In the neat liquid, α01 = 0·19 Å3 and γ01 = 0·22 Å3. In mixtures with CCl4 the values of α01 decrease at lower CS2 concentration whereas the values of γ01 increase. These results indicate that the isotropic induced dipole field is increasingly cancelled as the environment becomes more isotropic while the anisotropic part is amplified in CCl4. A report is also given of an anomalous concentration behaviour of the intensity of the combination mode v 1 + v 2-v 2 on the low frequency side of the v 1 transition which is amplified relative to the intensity of the v 1 mode as the CCl4 concentration increases.  相似文献   

10.
Group-theoretical methods are used to induce “global” distortions of C 60 from basis function(s) of a single “local” distortion in two cases: (1) The 60 vibrational modes arising from radial displacements of carbon atoms are found in terms of basis functions of A′, the one-dimensional symmetric representation of Cs; (2) The 24 vibrational modes arising from tangential displacements of hypothetical atoms placed at pentagon centers are found in terms of basis functions of E 1, the vector irreducible representation of C5v . The induction process is simplified by an icon notation (v) or (vμ) which uniquely labels the operations in Ih if μ,v = 0, 1, 2, 3, 4 and under/over lining of a digit is included. These icons describe the transformations IUSvTSμ of Felix Kline referred to a five-fold z-axis and two-fold x-axis and serve to label and “distinguish” symmetrically equivalent points of the truncated icosahedron.  相似文献   

11.
A progression in both the v 2 and v 3 vibrational modes, extending for several thousand cm-1 has been observed in the 266 nm Raman spectrum of NOCl.  相似文献   

12.
A calculated exhaustive set of vibrational state energies in 12C2H2, 13C2H2 and 12C2D2 has been used to analyse the evolution of the integrated number of states with increasing vibrational energy N(E) up to 15000 cm?1, 12000cm?1 and 10000 cm?1 in each isotopomer, respectively. The regular contribution to N(E) was modelled analytically and numerical parameters were fitted. The other expected contribution to N(E), which is of oscillatory nature, was quantified and is discussed using energyand time-dependent theories. Related periods of oscillation and temporal recurrences are interpreted consistently in terms of the constant of the motion Nr = 5v2 + 3v2 + 5v3 + v4 + v5 and of an average vibrational quantum. More pragmatically, the vibrational dynamics appear to be dominated by the bending vibrations, i.e., by the slowest oscillators.  相似文献   

13.
The oroxylin, 5,7‐dihydroxy 6‐methoxy flavone is a potent natural product extracted from ‘Vitex peduncularis’. Density functional theory (DFT) at B3LYP/6‐311G(d,p) level has been used to compute energies of different conformers of oroxylin to find out their stability, the optimized geometry of the most stable conformer and its vibrational spectrum. The conformer ORLN‐1 with torsion angles 0, 180, 180 and 0 degrees, respectively, for H13 O12 C6 C5, H14 O10 C4 C5, H13 O12 C6 C5 and H14 O10 C4 C5 is found to be most stable. The optimized geometry reveals that the dihedral angle φ between phenyl ring B and the chrome part of the molecule in − 19.21° is due to the repulsive force due to steric interaction between the ortho‐hydrogen atom H29 of the B ring and H18 of the ring C (H29·H18 = 2.198 Å). A vibrational analysis based on the near‐infrared Fourier transform(NIR‐FT) Raman, Fourier transform‐infrared (FT‐IR) and the computed spectrum reveals that the methoxy group is influenced by the oxygen lone pair‐aryl pz orbital by back donation. Hence the stretching and bending vibrational modes of the methoxy group possess the lowest wavenumber from the normal values of methyl group. The carbonyl stretching vibrations have been lowered due to conjugation and hydrogen bonding in the molecules. The intramolecular H‐bonding and nonbonded intramolecular interactions shift the band position of O10 H14 and O12 H13 stretching modes, which is justified by DFT results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Using the Raman technique we have studied the lattice vibrations of the prototype plastic crystal adamantane (C10H16). The measurements, as a function of temperature through the phase transition (208K), show splittings in certain lines. At room temperature using hydrostatic pressure, we also induced a phase transition. The transition is detected by Raman measurements, and we observe splittings of the very same vibrational lines. This indicates that the pressure induced phase transition yields the same crystal structure as the low temperature structure. Some analysis of the pressure and temperature derivatives of the vibrational modes is presented.  相似文献   

15.
The Raman line shapes of the ν1(A 1)C-H and C-D stretching fundamentals in liquid CHCl3 and CDCl3 have been measured as a function of pressure from 1 bar to 4·5 kbar within the temperature range 30°C to 90°C. Densities have also been determined under the same experimental conditions. The vibrational relaxation rates are obtained from the isotropic component of the Raman band and the experimental results can be summarized as follows: (i) as T increases at constant density the vibrational relaxation rate increases; (ii) at constant T, the increase in density produces an increase in the relaxation rate; (iii) an increase in temperature at constant pressure results in an increased relaxation rate. The above three cases hold for the CDCl3 liquid, whereas only (ii) may be stated for the CHCl3 liquid.

The experimental vibrational data are interpreted in terms of the Kubo stochastic line-shape theory and the collinear-isolated-binary-collision model proposed by Fischer and Laubereau. Application of the Kubo formalism shows that vibrational dephasing is the dominant relaxation mechanism and that the modulation is fast both in liquid CHCl3 and CDCl3.

Interpretation in terms of the binary collision dephasing model leads to the following results: (i) the pure dephasing mechanism seems to be the dominant broadening mechanism for the isotropic Raman line shapes studied; (ii) the calculated dephasing rates as a function of density and temperature show agreement with the experimental data. In these calculations the elastic collision times are obtained from the modified Enskog theory.  相似文献   

16.
Vibrational spectra recorded by coherent anti-Stokes resonance Raman scattering (CARS) from bacteriorhodopsin (BR) samples containing isotopically substituted (2H and 13C) retinal chromophores were measured using high repetition rate, low-power, picosecond pulsed excitation (λ1=580 nm and λs=640±3 nm). These picosecond resonance CARS (PR/CARS) data were analyzed via third-order susceptibility relationships [χ ( 3 ) ] to obtain band origins, bandwidths, relative intensities, and electronic phase factors assignable to all significant vibrational Raman features in the 1490–1700 cm−1 wavenumber region (the ethylenic stretching and C = N–H rocking or Schiff base modes). Isotopic substitution selectively places 2H at C15, 13C singly at the C10 position and at the C14 position, and 13C simultaneously in positions of C14 and C15. Each isotopic BR sample was examined not only in H2O, but also in D2O, which places a 2H at the Schiff base nitrogen of the retinal. In addition, PR/CARS data were recorded from each isotopic BR sample following either light adaptation [i.e. the BR sample contained a single retinal isomer (all- trans , 15- anti or BR-570)] or dark adaptation [i.e. the BR sample contained a mixture of comparable amounts of retinal isomers (BR-570 and 13- cis , 15- syn or BR-548)]. Excellent agreement was found between the vibrational features observed by PR/CARS and those obtained from spontaneous resonance Raman measurements from the same isotopically substituted BR pigments. Several new vibrational features were also found from the PR/CARS data. Vibrational Raman data from three of the isotopic BR samples in D2O are reported for the first time.  相似文献   

17.
The suitability of local temperature measurements by cw Raman spectroscopy for the CH4/H2 CVD system has been established. The temperature profiles in a model reactor were derived from H2 pure rotational lines and from hot bands of thev 1 vibrational band of CH4. Experimental results are presented for substrate temperatures of 773 K and of 1473 K. High accuracy of measurement and excellent agreement with theoretical solutions for the temperature field within the reactor were found.  相似文献   

18.
Combretastatin‐A2 (CA2), a potential anticancer drug in advanced preclinical development, is extracted from the medicinal plant C ombretum caffrum. The NIR‐FT Raman and FT‐IR spectral studies of the molecule were carried out and a b initio calculations performed at the B3LYP/6‐31G(d) level to derive the equilibrium geometry as well as the vibrational wavenumbers and intensities of the spectral bands. The vibrational analysis showed that the molecule has a similar geometry as that of c is‐stilbene, and has undergone steric repulsion resulting in twisting of the phenyl ring with respect to the ethylenic plane. Vibrational analysis was used to investigate the lowering of the stretching modes, and enhancement of infrared band intensities of the C–H stretching modes of Me2 may be attributed to the electronic effects caused by back‐donation and induction from the oxygen atom. Analysis of phenyl ring modes shows that the CA2 stretching mode 8 and the aromatic C–H in‐plane bending mode are equally active as strong bands in both IR and Raman spectra, which can be interpreted as the evidence of intramolecular charge transfer (ICT) between the OH and OCH3groups via conjugated ring path and is responsible for bioactivity of the molecule. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
20.
The adsorption of cyclohexane on Ru(001) at 90 K has been investigated by thermal desorption mass spectrometry, EELS, UV photoemission and LEED. Thermal desorption indicates the adsorption of the undissociated molecule first in a chemisorbed monolayer (Td = 200 K) with subsequent formation of multilayers (Td = 165 K) at higher exposures. The vibrational spectrum obtained by EELS is characterized by a frequency shift of the C-H stretching mode from 2920 cm?1 (multilayer) to 2560 cm?1 for the chemisorbed monolayer. Off-specular EELS data indicate two different electron scattering mechanisms for the C-H stretching mode. Whereas for the C-H stretching mode of the multilayer, large angle electron impact scattering is observed, the C-H soft-mode of the monolayer is largely due to small angle dipolar scattering. The He I photoelectron spectra of cyclohexane multilayers are characteristic of the undissociated molecule. A new assignment of C(2s) and the lowest C(2p) level, based on a comparison with benzene, shows that the chemisorbed monolayer is characterized by the absence of emission or broadening of the 2a1u level. This is attributed to C3v symmetry of the chemisorbed layer and to a possible interaction of the 2aIu orbital with the metal surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号