首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of Evans [1] for determining relative signs of nuclear spin coupling constants by double irradiation experiments has been extended to the case where the three coupled nuclei are all protons. It is thus possible to demonstrate from the high resolution proton magnetic resonance spectrum of the ring protons of 2-Furoic acid that the three spin coupling constants are all of like sign.  相似文献   

2.
The indirect nuclear spin–spin coupling constants of homogeneous hydrogen-bonded HCN clusters are compared with those of inhomogeneous HCN clusters where one of the terminal HCN molecules is substituted by its isomer HNC and by LiCN. Both the intra- and intermolecular (across the hydrogen bond) coupling constants are calculated for the linear form of the clusters containing up to three molecular monomers using different hybrid DFT functionals. The geometry of the monomers and clusters is optimised at the B3LYP/6-311++G(d,p) level. The effect of substitution by the ionic compound LiCN on the coupling constants of HCN is found to be more pronounced than that by HNC. The Ramsey parameters that form the total spin–spin coupling constants are also analysed individually. Among the four Ramsey parameters, the Fermi Contact term is found to be the dominant contributor to the total coupling constants in most cases. The presence of LiCN in the cluster tends to decrease the intramolecular Fermi Contact values, while HNC increases the same in all dimers and trimers. The contributions of localised molecular orbitals have been analysed for the HCN–HNC cluster to obtain some additional insight about the SSCC transmission mechanism along the coupling pathway.  相似文献   

3.
《Molecular physics》2012,110(19-20):2321-2327
We present vibrationally corrected nuclear spin–spin coupling constants for four hydrocarbons with different types of carbon–carbon bonds calculated with coupled cluster (CC) theory. First, we perform a systematic basis set investigation on acetylene for all of the four contributions (Fermi-contact, spin-dipole, para- and diamagnetic spin–orbit) to the spin–spin coupling constants and subsequently choose basis sets of sufficient flexibility to describe converged electronic properties. Then, in order to describe the effects of vibrational motion for the studied molecules we perform a Taylor expansion in the normal coordinates up to second order – a method that is well known for both its quality and efficiency – and rigorously estimate the resulting contribution for all types of spin–spin coupling constants. Combined, this allows us to obtain highly accurate benchmark estimates of the spin–spin coupling constants for acetylene, ethylene, ethane, and cyclopropane. This work provides one of the first systematic benchmarks of zero-point vibrational contributions to spin–spin coupling constants in poly-atomic molecules using the reliable CC theory and it is thus an important reference for further research within in-silico spin–spin coupling constant determination. We note that earlier computational estimates of zero-point vibrational effects agree well with those presented here (for acetylene, ethylene, and cyclopropane) while vibrational corrections for ethane are reported for the first time.  相似文献   

4.
An isotope-filtered selective refocusing (IFSERF) experiment is presented for the sensitive and precise measurement of the proton-proton coupling constant between chemically equivalent protons. The 2D NMR method combines an initial doubly selective isotope filter based on heteronuclear cross-polarization followed by a selective J-resolved block. The coupling topologies obtained from several 2D variants of the IFSERF experiment are described for the simultaneous measurement of both proton-proton and proton-carbon coupling constants in the involved AA'XX' spin system. Application on the determination of the relative configuration of double bonds in symmetrical molecules is illustrated.  相似文献   

5.
The influence of the hydrogen-bond formation on the NMR spin–spin coupling constants, including the Fermi contact, the diamagnetic spin–orbit, the paramagnetic spin–orbit and the spin dipole term, has been investigated for the ortho-aminobenzoic acid microhydrated with up to three water molecules. The one-bond and two-bond spin–spin coupling constants for several intra-molecular and across-the-hydrogen-bond atomic pairs are calculated employing high-level density functional theory in combination with the B3LYP functional with two different types of extended basis sets for each level of microhydration. The spin–spin coupling constants, in general, vary inversely with the hydrogen bond length. The Fermi contact term is found to be the dominant contributor to the total value of spin–spin coupling constant followed by the paramagnetic spin–orbit term. The variations of Fermi contact term and atomic charge distribution with size of microhydration follow quite similar trend. The effect of explicit solvation provided by microhydration has also been compared briefly with that of bulk implicit solvation obtained through polarised continuum model and mixed microhydration/continuum approach.  相似文献   

6.
HMBC是一种测定远程偶合~1H—~(13)C相关的十分灵敏的方法,特别适用于检测和甲基质子远程偶合(~2J,~3J)的碳.HOHAHA谱显示出多次Relay信息,选择适当参数可通过一次实验得到独立自旋体系中所有质子相关信息.本文用HMBC和HOHAHA实验结合同核(~1H)COSY和导核(~(13)C-~1H)COSY确认了Qwhaic acid—3—O—glucuronic acid分子中所有~(13)C和~1H的归属.  相似文献   

7.
Coherent polarization transfer among groups of dynamically polarized spins is explored and applied to field cycling experiments where spin evolution proceeds at low magnetic field while observation is performed at high field. The case of two nonequivalent spins-1/2 with scalar spin coupling is considered theoretically in detail for the cases of sudden and adiabatic field change. The criterion for efficient polarization transfer is derived theoretically and consistently confirmed experimentally for three photochemical reactions, involving spin systems of increasing complexity that exhibit chemically induced dynamic nuclear polarization: (1) the two polarized protons of the purine base of adenosine monophosphate; (2) four coupled indole protons of tryptophan; and (3) long-range polarization transfer among the aliphatic protons of cycloundecanone. The importance of polarization transfer in other cases with non-equilibrium population of the nuclear spin levels and the possibility of its utilization in field cycling NMR studies are discussed.  相似文献   

8.
About 350 lines in the microwave spectrum of NF2 have been measured in various ranges of frequency between 13.0 and 65.2 GHz by using two types of Zeeman effect spectrometers. Complete assignment of all lines has been achieved and, via the general microwave computer program SPINRO, the rotational constants, centrifugal distortion constants, dipole moment, electronic spin-rotation coupling constants, the constants for the coupling of the several nuclear spins with the electron spin and the nitrogen quadrupole coupling constants have all been obtained.By drawing upon the observed vibrational frequencies the average geometry of NF2 has been evaluated. Force constants and Coriolis coupling constants have also been derived.The values of the spin coupling constants for N and for F indicate that NF2 is a π-radical with the spin density mainly located on nitrogen. The multiplet patterns indicate that the ground electronic state wavefunction is antisymmetric to rotation about the molecular symmetry axis and so, for a π-radical, identifies the ground state as 2B1 as has previously been assumed for this molecule.  相似文献   

9.
R. Freeman 《Molecular physics》2013,111(5):385-393
The method of double irradiation in high resolution proton magnetic resonance has been used to confirm that the spin coupling constant between the methyl group and the proton in the cis position in both trans-crotonaldehyde and trans-crotonic acid differs in sign from the other coupling constants. Since this is a particularly searching test of the double irradiation method, it is suggested that relative signs of coupling constants could be determined in this way for most molecules containing three coupled hydrogen nuclei provided that the chemical shifts are large compared with the coupling constants.  相似文献   

10.
Two new NMR pulse sequences, based on intermolecular multiple-quantum coherences (iMQCs), were developed to obtain apparent J coupling constants with a scaling factor from one to infinity relative to the conventional J coupling constants. Here the apparent J coupling constants were defined as apparent peak separations in unit of Hz in a reconstructed spectrum for a coupled spin system. Except for the adjustable scaling factor for apparent J coupling constants, the sequences hold the advantage of high acquisition efficiency, and retain the spectral information such as chemical shifts, multiplet patterns, and relative peak areas under inhomogeneous fields. For spin systems with small scalar coupling constants, well-resolved J-spectra can be achieved by selecting a proper scaling factor. Theoretical predictions are in good agreement with simulation results and experimental observations.  相似文献   

11.
在前文工作的基础上,结合MNDO/EHMO分子轨道方法和自然杂化轨道方法,具体计算了CC键和CP键的核自旋偶合常数.计算结果表明,1JCC和1JCP主要由成键原子的轨道杂化作用和键极性这两种结构因素所决定.为从简单价键理论角度解释和计算1JCC和1JCP值提供了简便直观的方法.  相似文献   

12.
Analytical polarization and coherence transfer functions are presented for a spin system consisting of three dipolar coupled homonuclear spins 12 under energy matched conditions. Based on these transfer functions, optimal durations of Hartmann-Hahn mixing periods can be determined for arbitrary dipolar coupling constants D(12), D(13), and D(23). In addition, the dependence of the transfer efficiency on the relative size of the dipolar coupling constants is illustrated.  相似文献   

13.
The parameters of the nuclear magnetic resonance (NMR) spectrum – shielding constants and indirect spin–spin coupling constants – of three isomers of C20 are studied using density-functional theory. The performance of different exchange–correlation functionals is analysed by optimising the geometry for the ring, bowl and cage isomers, followed by a computation of the NMR constants at the optimised structure. The results are analysed and rationalised by performing comparisons of the three isomers with one another and with related systems such as polyynes (for the ring), o-benzyne (for the bowl) and C60 (for the cage). The shielding and spin–spin parameters calculated using the Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional are sufficiently reliable to assist in future experimental NMR studies of C20 and, in particular, the identification of its isomers.  相似文献   

14.
Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (An system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this "pseudo-strong" system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.  相似文献   

15.
A general and very simple strategy for achieving clean spin-state-selective excitation with full sensitivity in carbon-selective gradient-enhanced 1D HMQC and HSQC pulse schemes is presented. The incorporation of an additional hard 90 degrees (13)C pulse applied along a specific orthogonal axis just prior to acquisition into the conventional sequences allows us to select a simultaneous coherence transfer pathway which usually is not detected. The superimposition of this resulting antiphase magnetization to the conventional in-phase magnetization gives the exclusive excitation of the directly attached proton showing only the alpha or beta spin state of the passive (13)C nucleus. The propagation of this particular spin state to other protons can be accomplished by adding any homonuclear mixing process just after this supplementary pulse. Such an approach affords a suite of powerful selective 1D (13)C-edited NMR experiments which are helpful for resonance assignment purposes in overcrowded proton spin systems and also for the accurate determination of the magnitude and sign of long-range proton-carbon coupling constants in CH spin sytems for samples at natural abundance. Such measurements are performed by measuring the relative displacement of relayed signals in the corresponding alpha and beta 1D subspectra.  相似文献   

16.
Stereo-selectivedeuteration has been explored as an approach for improving the accuracy of NMR-derived, three-bond vicinal proton-proton coupling constants in the 12-base-pair DNA Dickerson sequence [d(CGCGAATTCGCG)(2)]. The coupling constants are useful for DNA structure determination in restrained molecular dynamics calculations. Specifically, the A5 and A6 residues were prepared with the H2" proton stereo-selectively replaced with a deuteron. Deuteration of the H2" leads to a 42-fold reduction in the transverse cross-relaxation rate of the H2' spin, effectively negating the contribution of transverse cross relaxation to the cross peak frequencies and phases. Calculated linewidth and polarization transfer functions indicated that the reduced dipolar interaction is also expected to result in a significant increase in intensity for all cross peaks involving the H1', H2', or H3' spin. The spectral complexity is also reduced by selective deuteration. Time-shared homonuclear decoupling of passive spins during acquisition was implemented, reducing the spin system, in some cases, to an effectively isolated two-spin system. This enables the use of a 90 degrees mixing pulse instead of the 35 degrees pulse commonly used in standard P.E.COSY experiments, leading to an additional 75% increase in signal intensity. Selective excitation pulses were used to reduce the number of increments required in the indirect dimension by as much as a factor of 4. The cumulative improvement in sensitivity is striking, approaching three orders of magnitude per unit time. Separate experiments, referred to as Stripe-COSY and Superstripe-COSY, were optimized for each coupling constant measured. Finally, J-doubling was used to obtain the most accurate peak separations. This comprehensive approach shows promise as an effective method for extracting highly accurate homonuclear vicinal coupling constants in DNA.  相似文献   

17.
周青春  王嘉赋  徐荣青 《物理学报》2002,51(7):1639-1644
采用单原子能级跃迁模型,导出在同时考虑自旋交换劈裂和自旋轨道耦合时磁光Kerr旋转的微观表达式,并就四能级跃迁情况,研究了磁光效应随原子基态及激发态能级自旋轨道耦合常数的变化规律.结果表明:磁光Kerr旋转角与自旋轨道耦合劈裂能量不成正比;单原子能级自旋轨道耦合常数为正或中间激发态自旋轨道耦合常数为负时,有利于提高磁光Kerr旋转. 关键词: 磁光Kerr效应 自旋轨道耦合 线性响应核 劈裂  相似文献   

18.
We use state-of-the-arts first-principles method to investigate the structural, electronic, and magnetic properties of stoichiometric LiFeAs. We optimize fully all the structures, including lattice constants and internal position parameters, for different magnetic orders. We find the magnetic ground state by comparing the total energies among all the possible magnetic orders. Our calculated lattice constants and As internal position are in good agreement with experiment. The experimental fact that no magnetic phase transition has been observed at finite temperature can be attributed to the tiny inter-layer spin coupling. Our results show that stoichiometric LiFeAs has almost the same striped antiferromagnetic spin order as other FeAs-based parent compounds and tetragonal FeSe do, which may imply that all Fe-based superconductors have the same mechanism of superconductivity.  相似文献   

19.
Two 2D J-modulated HSQC-based experiments were designed for precise determination of small residual dipolar one-bond carbon-proton coupling constants in (13)C natural abundance carbohydrates. Crucial to the precision of a few hundredths of Hz achieved by these methods was the use of long modulation intervals and BIRD pulses, which acted as semiselective inversion pulses. The BIRD pulses eliminated effective evolution of all but (1)J(CH) couplings, resulting in signal modulation that can be described by simple modulation functions. A thorough analysis of such modulation functions for a typical four-spin carbohydrate spin system was performed for both experiments. The results showed that the evolution of the (1)H-(1)H and long-range (1)H-(13)C couplings during the BIRD pulses did not necessitate the introduction of more complicated modulation functions. The effects of pulse imperfections were also inspected. While weakly coupled spin systems can be analyzed by simple fitting of cross peak intensities, in strongly coupled spin systems the evolution of the density matrix needs to be considered in order to analyse data accurately. However, if strong coupling effects are modest the errors in coupling constants determined by the "weak coupling" analysis are of similar magnitudes in oriented and isotropic samples and are partially cancelled during dipolar coupling calculation. Simple criteria have been established as to when the strong coupling treatment needs to be invoked.  相似文献   

20.
The proton hyperfine coupling tensors of the methylene protons in methyl-deuterated copper(II) bis(N,N-diethyldithiocarbamate) in a diamagnetic host crystal of the corresponding nickel complex have been measured by ENDOR spectroscopy. Two intermolecular and all four intramolecular proton coupling tensors could be determined. With the aid of spin densities, obtained from extended Hückel molecular orbital calculations, the anisotropic part of the tensors can be reproduced quantitatively, taking into account all two- and three-centre contributions. Comparison of the transition frequencies which are computed from the theoretical tensors with the experimental transitions enables the tracing of another five tensors which cannot be completely determined experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号