首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conductance of single-atom carbon chain (SACC) between two zigzag graphene nanoribbons (GNR) is studied by an efficient scheme utilizing tight-binding (TB) parameters generated via quasi-atomic minimal basis set orbitals (QUAMBOs) and non-equilibrium Green?s function (NEGF). Large systems (SACC contains more than 50 atoms) are investigated and the electronic transport properties are found to correlate with SACC?s parity. The SACCs provide a stable off or on state in broad energy region (0.1-1 eV) around Fermi energy. The off state is not sensitive to the length of SACC while the corresponding energy region decreases with the increase of the width of GNR.  相似文献   

2.
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L–1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.  相似文献   

3.
Frank J. Owens 《Molecular physics》2013,111(21-23):2441-2443
The electronic properties, band gap and ionization potential as well as the energies of the singlet and triplet states of zigzag and armchair graphene nanoribbons are calculated as a function of the number of oxygen atoms on the ribbon employing density functional theory at B3LYP/6-31G* level. The calculated band gaps indicate that both structures are semiconducting. The band gap of the armchair ribbons initially decreases followed by an increase with oxygen number. For zigzag ribbons the band gap decreases with increasing oxygen number whereas the ionization potential increases with oxygen content. In both armchair and zigzag ribbons the ionization potential shows a gradual increase with the number of oxygen atoms. Some of the oxygenated ribbons calculated have triplet ground states and have the density of states at the Fermi level for spin down greater than spin up suggesting the possibility they may be ferromagnetic semiconductors.  相似文献   

4.
Longitudinal tension and compression of graphene nanoparticles and nanoribbons have been studied using an empirical model. The pseudo-Young’s modulus of graphene nanoparticles and nanoribbons has been calculated. The size effect, i.e., the dependence of the elastic modulus on linear parameters of graphene objects, has been studied. An increase in pseudo-Young’s modulus discontinues as the length increases during the nanoparticle-to-nanoribbon transition. For the same perimeter, the graphene ribbon edges are characterized by smaller pseudo-Young’s moduli in comparison with uniaxial carbon nanotubes. Elastic deformation of graphene nanoparticles and nanoribbons has been observed in the relative length variation range of 0.93–1.12.  相似文献   

5.
Control of the band gap of graphene nanoribbons is an important problem for the fabrication of effective radiation detectors and transducers operating in different frequency ranges. The periodic edge-modified zigzag-shaped graphene nanoribbon (GNR) provides two additional parameters for controlling the band gap of these structures, i.e., two GNR arms. The dependence of the band gap E g on these parameters is investigated using the π-electron tight-binding method. For the considered nanoribbons, oscillations of the band gap E g as a function of the nanoribbon width are observed not only in the case of armchair-edge graphene nanoribbons (as for conventional graphene nanoribbons) but also for zigzag GNR edges. It is shown that the change in the band gap E g due to the variation in the length of one GNR arm is several times smaller than that due to the variation in the nanoribbon width, which provides the possibility for a smooth tuning of the band gap in the energy spectrum of the considered graphene nanoribbons.  相似文献   

6.
This paper reviews progress that has been made in the use of Raman spectroscopy to study graphene and carbon nanotubes. These are two nanostructured forms of sp2 carbon materials that are of major current interest. These nanostructured materials have attracted particular attention because of their simplicity, small physical size and the exciting new science they have introduced. This review focuses on each of these materials systems individually and comparatively as prototype examples of nanostructured materials. In particular, this paper discusses the power of Raman spectroscopy as a probe and a characterization tool for sp2 carbon materials, with particular emphasis given to the field of photophysics. Some coverage is also given to the close relatives of these sp2 carbon materials, namely graphite, a three-dimensional (3D) material based on the AB stacking of individual graphene layers, and carbon nanoribbons, which are one-dimensional (1D) planar structures, where the width of the ribbon is on the nanometer length scale. Carbon nanoribbons differ from carbon nanotubes is that nanoribbons have edges, whereas nanotubes have terminations only at their two ends.  相似文献   

7.
《Physics letters. A》2014,378(11-12):904-908
Rectification performances of rhombic graphene nanoribbons coupled to gold electrodes through thiolate bonds with left and right vertical carbon atoms substituted by one nitrogen or boron atom are analyzed by performing theoretical calculations using a self-consistent ab initio approach that combines the density functional theory with the non-equilibrium Green's function formalism. Increasing the size of graphene nanoribbon markedly improves the rectification effect because of the asymmetric potential profile distribution in rhombic graphene for polarization near the boron and nitrogen atoms.  相似文献   

8.
The electric field effect in ultrathin zigzag graphene nanoribbons containing only three or four zigzag carbon chains is studied by first-principles calculations, and the change of conducting mechanism is observed with increasing in-plane electric field perpendicular to the ribbon. Wider zigzag graphene nanoribbons have been predicted to be spin-splitted for both valence band maximum(VBM) and conduction band minimum(CBM) with an applied electric field and become half-metal due to the vanishing band gap of one spin with increasing applied field. The change of VBM for the ultrathin zigzag graphene nanoribbons is similar to that for the wider ones when an electric field is applied. However, in the ultrathin zigzag graphene nanoribbons, there are two kinds of CBMs, one is spin-degenerate and the other is spin-splitted, and both are tunable by the electric field. Moreover, the two CBMs are spatially separated in momentum space. The conducting mechanism changes from spin-degenerate CBM to spin-splitted CBM with increasing applied electric field. Our results are confirmed by density functional calculations with both LDA and GGA functionals, in which the LDA always underestimates the band gap while the GGA normally produces a bigger band gap than the LDA.  相似文献   

9.
采用第一性原理方法,研究了氧原子钝化的扶手椅型石墨纳米带的结构、电磁特性和光学性质. 氧原子钝化的石墨纳米带比氢原子钝化稳定,显示出金属性质. 自旋极化计算的能带和态密度研究表明,该纳米带反铁磁态比铁磁态稳定,表现为反铁磁半导体特征. 由于边沿钝化的氧原子的影响,该系统的介电函数有明显的红移,且第一个介电峰主要由最高价带贡献. 介电函数、折射系数、吸收系数及能量损失等的峰值与电子跃迁吸收有关.  相似文献   

10.
By using first-principles calculations and nonequilibrium Green’s function technique, we study elastic transport properties of crossed graphene nanoribbons. The results show that the electronic transport properties of molecular junctions can be modulated by doped atoms. Negative differential resistance (NDR) behaviour can be observed in a certain bias region, when crossed graphene nanoribbons are doped with nitrogen atoms at the shoulder, but it cannot be observed for pristine crossed graphene nanoribbons at low biases. A mechanism for the negative differential resistance behaviour is suggested.  相似文献   

11.
邓伟胤  朱瑞  邓文基 《物理学报》2013,62(6):67301-067301
在紧束缚近似下, 提出有限系统的Bloch定理方法, 解析计算了Zigzag型石墨烯纳米带的电子态和能带.研究发现, 其电子态有两类, 分别是驻波态和边缘态; 驻波态的波矢为实数, 波函数是正弦函数形式; 边缘态的波矢主要是虚数, 实数部分为零或者π/2, 波函数是双曲正弦函数形式. Zigzag型石墨烯纳米带的能带由驻波态能量和边缘态能量组成, 我们推导了边缘态的关于无限长方向波矢和能量的精确取值范围. 讨论了边缘态和驻波态的过渡点, 发现两种电子态通过不同的方式在受限波矢趋于零时关于格点位置逼近线性关系. 当受限方向也变成无限长时, 可以得到与无限大石墨烯相同的能带关系. 关键词: 紧束缚模型 Zigzag型石墨烯纳米带 边缘态  相似文献   

12.
We investigate the electronic properties of graphene nanoribbons with attachment of bearded bonds as a model of edge modification. The main effect of the addition of the beards is the appearance of additional energy subbands. The originally gapless armchair graphene nanoribbons become semiconducting. On the other hand, the originally semiconducting armchair graphene nanoribbons may or may not change to gapless systems depending on the width. With the inclusion of a transverse electric field, the band structures of bearded graphene nanoribbons are further altered. An electric field creates additional band-edge states, and changes the subband curvatures and spacings. Furthermore, the energy band symmetry about the chemical potential is lifted by the field. With varying width, the bandgap demonstrates a declining zigzag behavior, and touches the zero value regularly. Modifications in the electronic structure are reflected in the density of states. The numbers and energies of the density of state divergent peaks are found to be strongly dependent on the geometry and the electric field strength. The beard also causes electron transfer among different atoms, and alters the probability distributions. In addition, the electron transfers are modified by the electric field. Finally, the field introduces more zero values in the probability distributions, and removes their left–right symmetry.  相似文献   

13.
14.
We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations. It is reported that the pressure can improve the thermal conductivity of few-layer graphene nanoribbons. This improvement can reach 37.5% in the low temperature region. The pressure dependence of thermal conductivity is also investigated for different length, width and thickness of few-layer graphene. Our results provide an alternative option to tuning thermal conductivity of few-layer graphene nanoribbons. Furthermore, it maybe indicate a so-called pressure-thermal effect in nanomaterials.  相似文献   

15.
刘源  姚洁  陈驰  缪灵  江建军 《物理学报》2013,62(6):63601-063601
采用第一性原理计算方法, 系统研究了不同宽度、不同边缘修饰模式的间隔氢吸附锯齿型石墨烯纳米带的压电性质. 结构优化和结合能计算表明, 氢修饰石墨烯纳米带结构稳定. 氢原子间隔排列的吸附使得纳米带中的相邻碳原子成键及电荷状态不同, 导致拉伸时纳米带中六元碳环的正负电荷中心不再重合, 产生宏观电极化. 纳米带宽度越宽, 包含六元碳环数目越多, 则拉伸时纳米带长度方向上电偶极矩密度越大, 其压电性能越强. 另外, 边缘原子电荷状态决定了无拉伸时纳米带的初始电偶极矩密度, 其大小可以通过改变边缘氢原子的修饰模式来有效调控. 关键词: 石墨烯纳米带 第一性原理 修饰改性 压电性质  相似文献   

16.
We study the thermal transport of few-layer graphene nanoribbons in the presence of the transversal pressure by using molecular dynamics simulations.It is reported that the pressure can improve the thermal conductivity of few-layer graphene nanoribbons.This improvement can reach 37.5%in the low temperature region.The pressure dependence of thermal conductivity is also investigated for diferent length,width and thickness of few-layer graphene.Our results provide an alternative option to tuning thermal conductivity of few-layer graphene nanoribbons.Furthermore,it maybe indicate a so-called pressure-thermal efect in nanomaterials.  相似文献   

17.
Transport in graphene nanoribbons with an energy gap in the spectrum is considered in the presence of random charged impurity centers. At low carrier density, we predict and establish that the system exhibits a density inhomogeneity driven two dimensional metal-insulator transition that is in the percolation universality class. For very narrow graphene nanoribbons (with widths smaller than the disorder induced length scale), we predict that there should be a dimensional crossover to the 1D percolation universality class with observable signatures in the transport gap. In addition, there should be a crossover to the Boltzmann transport regime at high carrier densities. The measured conductivity exponent and the critical density are consistent with this percolation transition scenario.  相似文献   

18.
The speed of silicon-based transistors has reached an impasse in the recent decade, primarily due to scaling techniques and the short-channel effect. Conversely, graphene (a revolutionary new material possessing an atomic thickness) has been shown to exhibit a promising value for electrical conductivity. Graphene would thus appear to alleviate some of the drawbacks associated with silicon-based transistors. It is for this reason why such a material is considered one of the most prominent candidates to replace silicon within nano-scale transistors. The major crux here, is that graphene is intrinsically gapless, and yet, transistors require a band-gap pertaining to a well-defined ON/OFF logical state. Therefore, exactly as to how one would create this band-gap in graphene allotropes is an intensive area of growing research. Existing methods include nanoribbons, bilayer and multi-layer structures, carbon nanotubes, as well as the usage of the graphene substrates. Graphene transistors can generally be classified according to two working principles. The first is that a single graphene layer, nanoribbon or carbon nanotube can act as a transistor channel, with current being transported along the horizontal axis. The second mechanism is regarded as tunnelling, whether this be band-to-band on a single graphene layer, or vertically between adjacent graphene layers. The high-frequency graphene amplifier is another talking point in recent research, since it does not require a clear ON/OFF state, as with logical electronics. This paper reviews both the physical properties and manufacturing methodologies of graphene, as well as graphene-based electronic devices, transistors, and high-frequency amplifiers from past to present studies. Finally, we provide possible perspectives with regards to future developments.  相似文献   

19.
We apply the nonequilibrium Green's function method based on density functional theory to investigate the electronic and transport properties of waved zigzag and armchair graphene nanoribbons. Our calculations show that out-of-plane mechanical deformations have a strong influence on the band structures and transport characteristics of graphene nanoribbons. The computed I-V curves demonstrate that the electrical conductance of graphene nanoribbons is significantly affected by deformations. The relationship between the conductance and the compression ratio is found to be sensitive to the type of the nanoribbon. The results of our study indicate the possibility of mechanical control of the electronic and transport properties of graphene nanoribbons.  相似文献   

20.
We study the electronic transport in quantum wire structures made of graphene. By using the nonequilibrium Green function method, the transmission is studied for varies sizes samples. Our results show that the transmission sensitive depends on the size of the system and exhibits fluctuations due to the mismating of propagating modes between the central region and the leads. The number of resonant transmission peaks increases with the increase of length of the wire, while the width of the leads mainly affect the transmission in the region of low energy. A central energy gap in the transmission spectrum is more likely to appear in the quantum wire system than in the uniform armchair graphene nanoribbons. Moreover, the energy gap can be widened for a certain size of the quantum wire system by changing the width of the leads. These results may have potential applications in designing graphene-based devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号