共查询到20条相似文献,搜索用时 10 毫秒
1.
Mathematical modeling is performed to simulate forced convection flow of 47 nm- Al2O3/water nanofluids in a microchannel using the lattice Boltzmann method (LBM). Single channel flow and conjugate heat transfer
problem are taken into consideration and the heat transfer rate using a nanofluid is examined. Simulations are conducted at
low Reynolds numbers (2 ≤ Re ≤ 16). The computed average Nusselt number, which is associated with the thermal conductivity of nanofluid, is in the range
of 0.6 £ [`(Nu)] £ 13 0.6 \le \overline{Nu} \le 13 . Results indicate that the average Nusselt number increases with the increase of Reynolds number and particle volume concentration.
The fluid temperature distribution is more uniform with the use of nanofluid than that of pure water. Furthermore, great deviations
of computed Nusselt numbers using different models associated with the physical properties of a nanofluid are revealed. The
results of LBM agree well with the classical CFD method for predictions of flow and heat transfer in a single channel and
a microchannel heat sink concerning the conjugate heat transfer problem, and consequently LBM is robust and promising for
practical applications. 相似文献
2.
Lazarus Godson Asirvatham Balakrishnan Raja Dhasan Mohan Lal Somchai Wongwises 《Particuology》2011,9(6):626-631
To investigate the convective heat transfer of nanofluids, experiments were performed using silver–water nanofluids under laminar, transition and turbulent flow regimes in a horizontal 4.3 mm inner-diameter tube-in-tube counter-current heat transfer test section. The volume concentration of the nanoparticles varied from 0.3% to 0.9% in steps of 0.3%, and the effects of thermo-physical properties, inlet temperature, volume concentration, and mass flow rate on heat transfer coefficient were investigated. Experiments showed that the suspended nanoparticles remarkably increased the convective heat transfer coefficient, by as much as 28.7% and 69.3% for 0.3% and 0.9% of silver content, respectively. Based on the experimental results a correlation was developed to predict the Nusselt number of the silver–water nanofluid, with ±10% agreement between experiments and prediction. 相似文献
3.
The effects of the second-order velocity slip and temperature jump boundary conditions on the magnetohydrodynamic (MHD) flow and heat transfer in the presence of nanoparticle fractions are investigated. In the modeling of the water-based nanofluids containing Cu and Al2O3, the effects of the Brownian motion, thermophoresis, and thermal radiation are considered. The governing boundary layer equations are transformed into a system of nonlinear differential equations, and the analytical approximations of the solutions are derived by the homotopy analysis method (HAM). The reliability and efficiency of the HAM solutions are verified by the residual errors and the numerical results in the literature. Moreover, the effects of the physical factors on the flow and heat transfer are discussed graphically. 相似文献
4.
Bruno Abreu Bruno Lamas A. Fonseca N. Martins M. S. A. Oliveira 《Heat and Mass Transfer》2014,50(1):65-74
This study describes an investigation on the convective heat transfer performance of aqueous suspensions of multiwalled carbon nanotubes. The results suggested an increase on heat transfer coefficient of 47 % for 0.5 % volume fraction. Moreover, the enhancement observed during thermal conductivity assessment, cannot fully explain the heat transfer intensification. This could be associated to the random movements among the particles through a fluid, caused by the impact of the base fluid molecules. 相似文献
5.
Turbulent flow of nanofluids based on the distilled water with aluminum and silicon oxide particles of different sizes in a cylindrical channel is studied. The results of the measurements of the heat transfer coefficient and the pressure difference are presented. The maximum volume concentration of the particles was not greater than two percents. The dependence of the heat transfer coefficient on the nanoparticle concentration and their sizes and material is studied. It is shown that a considerable increase in the nanofluid heat transfer coefficient, compared with the corresponding value for water, may generally be expected. At the same time, the heat transfer coefficient of a nanofluid depends on the nanoparticle size and material; because of this, under certain conditions the nanofluid heat transfer coefficient can turn out to be lower than that of the baseline fluid. Situations, when this can occur, are established. It is for the first time experimentally shown that the nanofluid viscosity coefficient depends not only on the nanoparticle size but also on its material. 相似文献
6.
The steady laminar boundary layer flow and heat transfer from a warm, laminar liquid flow to a melting surface moving parallel
to a constant free stream is studied in this paper. The continuity, momentum and energy equations, which are coupled nonlinear
partial differential equations are reduced to a set of two nonlinear ordinary differential equations, before being solved
numerically using the Runge–Kutta–Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity
profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting
parameter, moving parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. It is
found that the problem admits dual solutions. 相似文献
7.
The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanoparticle concentration distributions are obtained. The effects of the Brownian motion parameter N b, the thermophoresis parameter N t, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem. 相似文献
8.
This investigation explores the characteristics of melting heat transfer in a boundary layer flow of the Jeffrey fluid near the stagnation point on a stretching sheet subject to an applied magnetic field. The governing boundary layer equations are transformed to ordinary differential equations by similarity transformations. Resulting nonlinear problems are solved analytically by the homotopy analysis method. It is noticed that an increase in the melting parameter decreases the dimensionless velocity and temperature, while an increase in the Deborah number increases the velocity and momentum boundary layer thickness. 相似文献
9.
Review of nanofluids for heat transfer applications 总被引:2,自引:0,他引:2
Saeid Vafaei 《中国颗粒学报》2009,7(2)
Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first repotted about a decade ago,though much controversy and inconsistency have been reported,and insufficient understanding of the formulation and mechanism of nanofluids further limits their applications.This work presents a critical review of research on heat transfer applications of nanofluids with the aim of identifying the limiting factors so as to push forward their further development. 相似文献
10.
Mohammad HojjatSeyed Gholamreza Etemad Rouhollah BagheriJules Thibault 《Experimental Thermal and Fluid Science》2011,35(7):1351-1356
Forced convection heat transfer of non-Newtonian nanofluids in a circular tube with constant wall temperature under turbulent flow conditions was investigated experimentally. Three types of nanofluids were prepared by dispersing homogeneously γ-Al2O3, TiO2 and CuO nanoparticles into the base fluid. An aqueous solution of carboxymethyl cellulose (CMC) was used as the base fluid. Nanofluids as well as the base fluid show shear-thinning (pseudoplastic) rheological behavior. Results indicate that the convective heat transfer coefficient of nanofluids is higher than that of the base fluid. The enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. The increase in the convective heat transfer coefficient of nanofluids is greater than the increase that would be observed considering strictly the increase in the effective thermal conductivity of nanofluids. Experimental data were compared to heat transfer coefficients predicted using available correlations for purely viscous non-Newtonian fluids. Results show poor agreement between experimental and predicted values. New correlation was proposed to predict successfully Nusselt numbers of non-Newtonian nanofluids as a function of Reynolds and Prandtl numbers. 相似文献
11.
Experimental measurements were carried out on the boiling heat transfer characteristics of γ-Al2O3/water and SnO2/water Newtonian nanofluids. Nanofluids are liquid suspensions containing nanoparticles with sizes smaller than 100 nm. In
this research, suspensions with different concentrations of γ-Al2O3 and SnO2 nanoparticles in water were studied under nucleate pool boiling heat transfer conditions. Results show that nanofluids possess
noticeably higher boiling heat transfer coefficients than the base fluid. The boiling heat transfer coefficients depend on
the type and concentration of nanoparticles. 相似文献
12.
13.
Nanofluids are obtained by dispersing homogeneously nanoparticles into a base fluid. Nanofluids often exhibit higher heat
transfer rate in comparison with the base fluid. In the present study, forced convection heat transfer under laminar flow
conditions was investigated experimentally for three types of non-Newtonian nanofluids in a circular tube with constant wall
temperature. CMC solution was used as the base fluid and γ-Al2O3, TiO2 and CuO nanoparticles were homogeneously dispersed to create nanodispersions of different concentrations. Nanofluids as well
as the base fluid show shear thinning (pseudoplastic) rheological behavior. Results show that the presence of nanoparticles
increases the convective heat transfer of the nanodispersions in comparison with the base fluid. The convective heat transfer
enhancement is more significant when both the Peclet number and the nanoparticle concentration are increased. The increase
in convective heat transfer is higher than the increase caused by the augmentation of the effective thermal conductivity. 相似文献
14.
A simple model for homogeneous-heterogeneous reactions in stagnation-point boundary-layer flow is constructed in which the homogeneous (bulk) reaction is assumed to be given by isothermal cubic autocatalator kinetics and the heterogeneous (surface) reaction by first order kinetics. The possible steady states of this system are analysed in detail in the case when the diffusion coefficients of both reactant and autocatalyst are equal. Hysteresis bifurcations leading to multiple solutions are found. The temporal stability of these steady states is then discussed. 相似文献
15.
An experimental study was performed to understand the nucleate boiling heat transfer of water–CuO nanoparticles suspension (nanofluids) at different operating pressures and different nanoparticle mass concentrations. The experimental apparatus is a miniature flat heat pipe (MFHP) with micro-grooved heat transfer surface of its evaporator. The experimental results indicate that the operating pressure has great influence on the nucleate boiling characteristics in the MFHP evaporator. The heat transfer coefficient and the critical heat flux (CHF) of nanofluids increase greatly with decreasing pressure as compared with those of water. The heat transfer coefficient and the CHF of nanofluids can increase about 25% and 50%, respectively, at atmospheric pressure whereas about 100% and 150%, respectively, at the pressure of 7.4 kPa. Nanoparticle mass concentration also has significant influence on the boiling heat transfer and the CHF of nanofluids. The heat transfer coefficient and the CHF increase slowly with the increase of the nanoparticle mass concentration at low concentration conditions. However, when the nanoparticle mass concentration is over 1.0 wt%, the CHF enhancement is close to a constant number and the heat transfer coefficient deteriorates. There exists an optimum mass concentration for nanofluids which corresponds to the maximum heat transfer enhancement and this optimum mass concentration is 1.0 wt% at all test pressures. The experiment confirmed that the boiling heat transfer characteristics of the MFHP evaporator can evidently be strengthened by using water/CuO nanofluids. 相似文献
16.
In this study, a numerical simulation of copper microchannel heatsink (MCHS) using nanofluids as coolants is presented. The
nanofluid is a mixture of pure water and nanoscale metallic or nonmetallic particles with various volume fractions. Also,
the effects of various volume fractions, volumetric flow rate and various materials of nanoparticles on the performance of
MCHS have been developed. A three-dimensional computational fluid dynamics model was developed using the commercial software
package FLUENT, to investigate the conjugate fluid flow and heat transfer phenomena in micro channel heatsinks. The results
show that the cooling performance of a microchannel heat sink with water based nanofluid containing Al2O3 (vol 8%) is enhanced by about 4.5% compared with micro channel heatsink with pure water. Nanofluids reduce both the thermal
resistance and the temperature difference between the top (heated) surface of the MCHS and inlet nanofluid compared with that
pure water. The cooling performance of a micro channel heat sink with metal nanofluids improves compared with that of a micro
channel heat sink with oxide metal nanofluids because the thermal conductivity of metal nanofluid is higher than oxide metal
nanofluids. Micro channel heat sinks with nanofluids are expected to be good candidates as the next generation cooling devices
for removing ultra high heat flux. 相似文献
17.
The paper is concerned about formulation of aqueous based nanofluids and its application under natural convective heat transfer conditions. Titanium dioxide nanoparticles are dispersed in distilled water through electrostatic stabilization mechanisms and with the aid of a high shear mixing homogenizer. Nanofluids formulated in such a way are found very stable and are used to investigate their heat transfer behaviour under the natural convection conditions. The preliminary results are presented in this paper. Both transient and steady heat transfer coefficients are measured and the results show a systematic decrease in the natural convective heat transfer coefficient with increasing particle concentration. This is in contradiction to the initial expectation. Possible reasons for the observations are discussed. 相似文献
18.
19.
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases. 相似文献
20.