首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, there has been considerable interest in predicting the crystal densities of both molecular and ionic energetic compounds using the computed volumes Vm of the isolated gas phase molecules or ions. The surfaces enclosing the volumes are taken to be the 0.001 au (electrons/bohr3) contours of the molecules’ and ions’ electronic densities. For molecular solids, it is known that the ratio M/Vm (M = molecular mass) gives densities that are overall reasonably good, although they can be markedly improved by introduction of an electrostatic interaction correction term. For ionic solids, the subject of this paper, the ratio M/Vm (M = formula unit mass) is not nearly as effective; Vm tends to be significantly larger than the effective volumes of the ions in the crystal, leading to underestimated densities, with an average absolute error of 0.089 g/cm3. The correction term that improves molecular crystal densities is not applicable in the case of ionic solids; however we show, for a database of 25 compounds plus five test cases, that an average absolute error of 0.033 g/cm3 can be achieved by combining M/Vm with terms involving the average positive and negative potentials and areas on the cationic and anionic surfaces. The root-mean-square error is 0.040 g/cm3.  相似文献   

2.
VPO catalysts were prepared on oxidized and unoxidized activated carbons differing in initial porous structure. Carbons were oxidized under relatively soft (30% H2O2, 200 °C) and hard (50% H2O2, 350 °C) conditions. Carbon modification was carried out hydrothermally in a traditional autoclave (HTT) or a microwave reactor (MWT). The synthesis was also carried out under hydrothermal (HTS or MWS) conditions. V2O5 and NH4VO3 were used as precursors. The samples are characterized by diversified porous structure at SBET = 732-1617 m2/g and Vpor = 0.44-0.90 cm3/g, as well as various degree of VPO crystallinity. Possibility of preparation of the VPO catalysts under ecologically appropriate conditions, i.e. in aqueous solutions, was shown.  相似文献   

3.
沈学礎  陈宁锵 《物理学报》1964,20(10):1019-1026
本文报导了在流体静压力18000kg/cm2的范围内,锗隧道二极管伏安特性随压力变化的实验结果。测量了十六只锗隧道二极管的峯值电流IP、峯值电压VP、谷值电流IV、谷值电压VV、指数过剩电流IX和反向隧道电流等参数与流体静压力的关系。结果表明:峯值电流IP相对于压力的半对数作图为斜率不同的二段下降直线,在5000—9000kg/cm2范围内有转折点;峯值电压随压力改变较小;在误差范围内谷值电压不随压力而改变。对于大部分被测管子,谷值电流与压力的关系类似于峯值电流与压力的关系;随着压力的增加,指数过剩电流区向高偏压方向移动。讨论了峯值电流及指数过剩电流随压力变化的规律和其他结果。认为转折点的存在是表明隧道跃迁机构的改变;由指数过剩电流区固定电流值测偏压随压力改变,求得禁带宽度的压力系数与其他方法获得的结果很好符合。  相似文献   

4.
The Debye-Waller factor of hcp 4He at molar volumes Vm of 12.06 and 15.72 cm3 has been measured by neutron diffraction techniques. It has been found that for scattering vectors Q ? 7A??1 the Debye-Waller factor can be well represented by a simple Gaussian. The Debye temperatures, appropriate to the Debye-Waller factor, were found to be 99.73 K (Vm = 12.06 cm3) and 55.86 K (Vm = 15.72 cm3). No evidence was found of any forbidden reflections.  相似文献   

5.
A numerical model for current conduction in single layer OLEDs including both injection and bulk effect is proposed. Based upon this model, a nearly linear distribution of the electric field was found, and the slope of the distribution, or the field at the injection electrode (F0) is dependent on the energy barrier, mobility, trap density and trap depth. F0 equals the half of the mean field of the device (Fm), which equals the quotient of the bias to the thickness of organic layer, is proposed as the limit for bulk-limited (BL) and injection-limited (IL) conduction. OLEDs with F0 greater than Fm/2 are considered as IL-conducting, while those with F0 less than Fm/2 are considered as BL-conducting. It was found that, the state of current conduction is not only determined by the energy barrier at the injection electrode, but also by the mobility, trap density and trap depth of the organic semiconductor. OLEDs with high injection barrier (>0.7 eV), trap density less than 1019 cm-3, and reduced trap depth shallower than 5, will be IL-conducting, while those with low energy barrier (<0.2 eV), low carrier mobility (<10-6 cm2V-1s-1), and trap density higher than 1017 cm-3, will be BL-conducting. PACS 78.60.Fi; 75.40.Mg; 73.21.Ac  相似文献   

6.
O22−-doped NaCl crystals are colored electrolytically by using a pointed cathode and a flat anode at various temperatures and voltages, which mainly benefit from appropriate coloration temperatures and voltages as well as anode structure of used electrolysis apparatus. Characteristic OH, U, V2m, UA, V2, V3, O2−-Va+ complex, F, R1, R2 and M absorption bands are observed in absorption spectra of the colored crystals. Production and conversion of color centers in electrolytic coloration is explained. Current-time curves for electrolytic colorations and their relationships with electrolytic colorations were given.  相似文献   

7.
The high-pressure effects on lithium ion conduction in LiBH4 have been investigated. The high-pressure ac-impedance measurement was performed by using a cubic anvil-type apparatus under 2 to 6 GPa at various temperatures. For the hexagonal structure (Phase I), the activation volume for lithium ion conduction was found to be around 3 cm3/mol (≈ 0.09Vm, where Vm means its molar volume). This activation volume is almost comparable to that for other fast-ion conductors such as NASICONs. The lithium ion conductivities of orthorhombic (Phase III) and cubic (Phase V) structures were also measured. Regardless of crystal structures, the activation energies of Phases I, III, and V were almost identical at around 50 to 60 kJ/mol; on the other hand, the pre-exponential terms of Phases III and V were smaller than those of Phase I by one to two orders of magnitude.  相似文献   

8.
The influence of a high-power ion beam on polycrystalline oxides (V2O5, MoO3, and WO3) is investigated. Oxide irradiation with ion beams with current densities of greater than ~30 A/cm2 is established to initiate changes in the color of irradiated layers and lead to surface-layer particle melting. It is demonstrated that a distinctive feature of the interaction between a high-power ion beam and V2O5 is the formation of surface nanosheets and nanowires whose characteristic cross-sectional size and thickness are ~1 μm and up to ~40 nm, respectively. The nanosheets are generated near emerging surface cracks if the beam current density is ~100 A/cm2. Possible mechanisms of surface nanostructures formation under the action of pulsed ion beams are discussed.  相似文献   

9.
Water clusters (H2O)6 are simulated by the Monte Carlo method with the Metropolis function at various temperatures (T 1 = 273 K, T 2 = 298 K, and T′1= 373 K) and densities (ρ1 = 0.9998 g/cm3, ρ2 = 0.9167 g/cm3, and ρ3 = 0.00059 g/cm3) of the system. It is established that the number of retained most probable configuration types at ρ1 = 0.9998 g/cm3 during temperature transitions from T 1 = 273 K to T 2 = 298 K and from T1 = 373 K to T 2 = 298 K is smaller than at ρ3 = 0.00059 g/cm3. This result was acquired on the background of the following invariable parameters of the system with the same temperature transitions for each of three values of density: (i) the average number of retained most probable configuration types, (ii) the average fraction of weight coefficients of the most probable configuration types, and (iii) the average potential energy. The configuration type that was retained among the most probable configuration types of the system for all values of density (ρ1 = 0.9998 g/cm2, ρ2 = 0.9167 g/cm3, and ρ3 = 0.00059 g/cm3) of the system for temperature transitions from T 1 = 273 K to T 2 = 298 K and from T1 = 373 K to T 2 = 298 K was also revealed.  相似文献   

10.
Defective graphene nanosheets (dGN4V) with 5-9, 5-8-5, and point defects were synthesised by a sonoelectrochemical method, where a potential of 4 V (vs. Ag/AgCl) was applied to drive the rapid intercalation of phosphate ions between the layers of the graphite foil as a working electrode. In addition to these vacancies, double vacancy defects were also created when the applied potential was increased to 8 V (dGN8V). The defect density of dGN8V (2406 μm−2) was higher than that of dGN4V (1786 μm−2). Additionally, dGN8V and dGN4V were applied as catalysts for the hydrogen peroxide reduction reaction (HPRR). The mass activity of dGN8V (1.31 × 10−2 mA·μg−1) was greater than that of dGN4V (1.17 × 10−2 mA·μg−1) because of its high electrochemical surface area (ECSA, 1250.89 m2·g−1) and defect density (ND, 2406 μm−2), leading to low charge transfer resistance on the electrocatalytic interface. The ECSA and ND of dGN4V were 502.7 m2·g−1 and 1786 μm−2, respectively. Apart from its remarkable HPRR activity, the cost-effective dGN8V catalyst also showed potential as an amperometric sensor for the determination of H2O2.  相似文献   

11.
The longitudinal ultrasonic velocity (Vl), magnetization and resistivity of polycrystalline La1/3Sr2/3MO3 (M=Mn, Fe, Co) have been measured between 20 and 300 K. Dramatic anomalies in Vl were observed near the temperature of the charge-ordering transition (CO), charge disproportionation transition (CD), and ferromagnetic transition (FM), which are explained by the Jahn–Teller effect originating from the M ions (M=Mn, Fe, Co). However, the detailed form of these anomalies is different, which is strongly depended on the M ion's unique electronic structure. For La1/3Sr2/3MO3 (M=Mn, Fe), the Vl exhibits a valley around the CO transition temperature because of the localization of the Jahn–Teller active ions (Mn3+, Fe4+). And due to the instability of Fe4+, the CD transition occurs in La1/3Sr2/3FeO3, which results in another softening in Vl, while only normal increase is observed in La1/3Sr2/3MnO3. For La1/3Sr2/3CoO3, the local lattice distortion via the Jahn–Teller effect of intermediate spin Co3+ leads to the velocity anomaly in the ferromagnetic metallic state.  相似文献   

12.
The absorption spectrum of dideuteroacetylene has been recorded by intracavity laser absorption spectroscopy (ICLAS) in the 10 200–12 500cm?1 spectral region. Among 25 absorption bands of 12C2D2 rotationally analysed in this spectral region, 17 are newly observed. They include one IIu+ g and thirteen Σ+ u+ g bands starting from the vibrational ground state and eleven hot bands from the V 4 = 1 and V 5 = 1 lower states. The rotational structure of two excited levels is affected by a strongly J-dependent interaction with a perturber which induces intensity transfer to extra lines. The coupling is identified as a I-resonance interaction with δu dark states and the vibrational assignment of the perturbers is discussed. Two Σ-Σ bands of the 12C13 CD2 species, present in natural abundance in the sample, could also be identified and rotationally analysed. Most of the corresponding excited vibrational levels of 12C2D2 were unambiguously assigned using the polyad model [Herman, M., el idrissi, M. I., Pisarchik, A., Campargue, A., Gaillot, A.-C., Biennier, L., di lonardo, G. and Fusina, L., 1998, J. chem. Phys., 108, 1377] which allows vibrational energies and B V rotational constants to be predicted. In particular the previously highlighted 1/244 anharmonic resonance is confirmed by energy and intensity features in several {(V 1, V 2, V 3, V 4 = 0, V 5 = 0),(V 1 ?1, V 2 + 1, V 3 V 4 = 2, V 5 = 0)} dyads. Significant deviations between predicted and experimental energy levels are observed for a few levels and discussed.  相似文献   

13.
From measurements of the magnetic properties of some dilute AuFe alloys we find that V0, the strength of the Ruderman-Kittel-Kasuya-Yosida interaction, V(r) = (V0 cos 2kFr)/r3, decreases rapidly from V0 = 11.9 × 10-36 erg cm3 at n = 42 ppm Fe to 1.03 × 10-36 erg cm3 at 6050 ppm Fe. We suggest that the observed decrease of V0 is due to self-damping of the RKKY oscillations, and discuss the significance of this decrease for the interpretation of other experiments on AuFe.  相似文献   

14.
The paper gives the measurements of the magnetic susceptibility of p-type CdSb at 77°K on samples crystallographically oriented and cut from single crystals having an acceptor concentration of 2.3×1015cm–3, 2.4×1016 cm–3 and 1.5×1017 cm–3. The anisotropy of the lattice and hole gas contribution was found and the ratio of the hole effective mass obtained from measurement of the transversal magnetoresistivity in p-type CdSb at 77°K [3] was used to determine their absolute values:m a=0.48m 0=m b=0.44m 0,m c=0.17m 0.  相似文献   

15.
The multiplet splitting patterns of microwave transitions in the ground state and the first two torsional excited states of CH3OCH3, CD3OCD3, and CD3OCH3 were analyzed in terms of the semirigid rotor models C2vF-C3vT-C3vT and C3F-C3vT-C3vT?. The following nonzero potential coefficients were obtained for CH3OCH3: V30 = V03 = 909.05 ± 0.49 cm?1, V33 = 5.06 ± 1.60 cm?1; for CD3OCH3: V30(CD3) = 897.18 ± 2.41 cm?1, V03(CH3) = 910.45 ± 0.33 cm?1; for CD3OCD3: V30 = V03 = 897.00 cm?1. These results are compared to earlier microwave studies of these molecules.  相似文献   

16.
Morphological, structural, electronic, and adsorption characteristics of complex oxides such as fumed silica/alumina and silica/titania, fumed silica with deposited oxides of Mg, Ti, Mn, Ni, Cu, Zn and Zr, silica gel with grafted ZrO2, sol-gel titania doped by 3d-metals (Cr, Fe, Mn, V) were compared using adsorption, TEM, AFM, XRD, XPS, Mössbauer and Raman spectroscopy data. It was shown that surface, volume, and phase compositions of oxides, particle size distributions (5 nm-3 μm), specific surface area (SBET ∼ 50-500 m2/g), and porosity (VP ∼ 0.1-2 cm3/g) affected by synthesis technique and subsequent treatment determine electronic structure (bandgap, valence band and core levels structure) of the materials, adsorption of molecules and metal ions as well as other characteristics.  相似文献   

17.
在2000 ~ 9000 波数 、 12000 ~12900 波数的光谱区间记录了室温下H2SiCl2气体分子的振动泛频光谱,所用的仪器分别是高分辨傅立叶变换光谱仪和高灵敏激光腔内吸收光谱仪。用局域模模型和包含达林-丹尼生共振的简正模模型,归属了SiH伸缩振动的基频和泛频,振动量子数的改变△VSiH=1, 2, 3, 4 and 6。通过对实验能级的非线性拟合,得到SiH伸缩振动的谐振频率ωm、非谐性常数χm、键间耦合系数λ、莫尔斯振子参数 De、α 和相互作用力常数 。实验发现,随着振动能量的增加,振动簇(manifold,两个SiH键的伸缩振动量子数m+n=常数 )中能量最低的两个能级的间距逐渐减小。当△VSiH≥4时,在实验误差范围内这两个最低的振动态能级简并。这种简并的能级结构类似双原子莫尔斯振子,符合Birge-Sponer 关系。双原子莫尔斯振子直接描述了H2SiCl2分子中SiH 的高泛频伸缩振动,表明在高振动情况下振动能量已经集中到单个SiH键上。  相似文献   

18.
A novel wet electrostatic precipitator (WESP) is designed for effective control of fine aerosol from humid gases. It operates on the principle of unipolar particle charging in the corona discharge and particle precipitation under the field of their own space charge. The new precipitator is characterized by high gas velocity in the ionizing stage. Tests were carried out for gas with (NH4)2SO4, HCl and (NH4)Cl aerosol at particle number concentration up to 5·107#/cm3 and mass concentration 10–1000 mg/Nm3. For test conditions one-field WESP ensures mass collection efficiency 90–97% and two-field electrostatic precipitator up to 99%.  相似文献   

19.
In a TiO2–perovskite heterojunction solar cell (TiO2–PHSC), besides the perovskite CH3NH3PbX3, TiO2 as one side of the TiO2/CH3NH3PbX3 heterojunction also plays an important role in the photovoltaic effect. In order to improve the performance of the TiO2–PHSC with the structure of glass/FTO/compact TiO2/mesoporous TiO2/CH3NH3PbI3–xClx /poly‐TPD (poly(N,N ′‐bis(4‐butylphenyl)‐N,N ′‐bis(phenyl)benzidine))/Au, a 2 nanometer thick Cs2CO3 layer is thermally evaporated on the mesoporous TiO2 layer. The short‐circuit current density (Jsc) raises from 17.7 mA cm–2 to 18.9 mA cm–2, the open‐circuit voltage (Voc) from 0.81 V to 0.87 V, and the fill factor (FF) from 55.2% to 67.3%; as a result, the power conservation efficiency (PCE) increases from 8.0% to 11.1% under AM 1.5G solar illumination (100 mW cm–2). Moreover, in a TiO2–PHSC free of mesoporous TiO2, where Cs2CO3 is evaporated on the compact TiO2 layer, the Jsc, Voc, FF and PCE values increase from 16.0 mA cm–2, 0.83 V, 50.8% and 6.7% to 17.9 mA cm–2, 0.90 V, 59.3%, and 9.5%, respectively. The reasons of the PCE increase for either the first kind of TiO2–PHSC or the mesoporous‐TiO2‐free TiO2–PHSC with a nanometer‐thick Cs2CO3 layer on mesoporous TiO2 or compact TiO2 are discussed. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
In CdTe doped with vanadium the photoluminescence due to the 3 T 2(F) 3 A 2(F) transition of V3+(d 2) is detected. Its decay time is determined as (630±20) s, a result comparable to the analogous emissions in various host lattices. Further emissions around 5000 cm–1 and 9000 cm–1 are caused by charge-transfer transitions or bound-exciton decay. Excitation and sensitization spectra yield information on the positions of the energy levels within the gap, which are discussed using two different models. At T=4.2 K, the distance of the V2+/V3+ donor level is 7300 cm–1 and 5700 cm–1 referred to the valence and the conduction band edges, respectively. The absence of V2+(d 3) centres is tentatively ascribed to the existence of deeply bound excitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号