首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using nonequilibrium Green's function formalism combined first-principles density functional theory, we analyze the transport properties of a 4,4-dimethyl-6-(4-nitrophenyl)-2-phenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene molecular optical switch. The title molecule can convert between closed and open forms by visible or ultraviolet irradiation. The I-V characteristics, differential conductance, on-off ratio, electronic transmission coefficients, spatial distribution of molecular projected self-consistent Hamiltonian orbitals, HOMO-LUMO gaps, effect of electrode materials Y(111)(Y =Au, Ag and Pt) on electronic transport and different molecular geometries corresponding to the closed and open forms through the molecular device are discussed in detail. Based on the results, as soon as possible the open form translates to the closed form, and there is a switch from the ON state to the OFF state(low resistance switches to high resistance). Theoretical results show that the donor/acceptor substituent plays an important role in the electronic transport of molecular devices. The switching performance can be improved to some extent through suitable donor and acceptor substituents.  相似文献   

2.
We investigate the electronic transport properties of photochromic azobenzene-based molecular devices with Au electrodes using non-equilibrium Green’s function and density functional theory. A reversible switching behavior between cis and trans isomerization is found in the device. In addition, the substituent of ?NH2 on the right end hydrogen atom of azobenzene molecule reduces the switching ratio of current, consequently the disappearance of switching behavior, while the substituent of ?NO2 improves the switching ratio of current. We discuss the different electronic transport induced by different substituents through the transmission spectra, localized density of states, molecular projected self-consistent Hamiltonian and transmission pathways. The observed polarization effect under bias is explained by the evolution of molecular projected self-consistent Hamiltonian of LUMO level. The results indicate that the electron-withdrawing group ?NO2 substituting right terminal hydrogen of azobenzene molecule becomes a candidate for improving the performance of molecular device.  相似文献   

3.
Cai-Juan Xia  De-Sheng Liu  Han-Chen Liu 《Optik》2012,123(14):1307-1310
By applying nonequilibrium Green's function formalism combined first-principles density functional theory, we investigate the electronic transport properties of the phenylazoimidazole optical molecular switch. The molecule that comprises the switch can convert between the cis and the trans forms upon photoexcitation. The influence of HOMO–LUMO gaps and the spatial distributions of molecular orbitals on the electronic transport through the molecular device are discussed in detail. Theoretical results show that the current through the trans form is significantly larger than through the cis form, which suggests this system has attractive potential application in future molecular switch technology.  相似文献   

4.
Photophysical properties of prototype excited state intramolecular proton transfer (ESIPT) system 4-methyl-2,6-diformyl phenol (MFOH) and its derivatives were studied by steady state and time-resolved fluorescence spectroscopy as well as by ab-initio quantum chemical calculation. It has been found that nonradiative decay process is the most important deactivation channel in all the cases and the hydrogen bonded enol conformer is stable in the ground state whereas, the proton transferred keto form is energetically favoured in the S1(ππ*) state. However, the net gain in stabilization in the process of ESIPT is almost unaffected by the substitution. The reversal of stability in the excited state was explained on the basis of the nature of frontier molecular orbital in all the cases. Intrinsic reaction coordinate analysis showed that drastic change in nonbonded interoxygen distance R(O-O) in the proton transfer pathway causes the switch over from the enol to keto configuration. A close comparison of several properties like molecular geometry, hydrogen bond strength and atomic charge in different derivatives of MFOH were found to be consistent and in good agreement with the experimental results obtained from time-resolved fluorescence experiments.  相似文献   

5.
运用密度泛函(DFT)和含时密度泛函(TD DFT)理论方法研究了在2-(2-羟基苯基)苯并噻唑(HBT)苯环羟基的邻位或对位分别引入羟基和醛基后的衍生物分子内质子转移过程,考察了取代基的电子效应及取代位置对分子内氢键和质子转移反应的影响,模拟计算了各分子的IR振动光谱和电子光谱.研究发现,HBT及其衍生物分子可以形成分子内氢键,且激发态时氢键增强.基态时以醇式构型稳定存在,激发态时酮式结构为优势构象.分子的最大吸收峰和发射峰主要源于电子从前线分子轨道HOMO到LUMO之间的跃迁.基态分子内质子转移需要越过较高的能垒因而难以发生,而激发态时只需越过较低能垒就很容易发生激发态分子内质子转移.取代基的电子效应和取代位置对HBT分子氢键强度、互变异构体的相对稳定性、电子光谱及质子转移反应的能垒均有一定影响.  相似文献   

6.
Hasan Tanak 《Molecular physics》2014,112(11):1553-1565
Density functional calculations of the structure, vibrational spectra, molecular electrostatic potential and thermodynamic functions have been performed at the B3LYP/6-311++G(d,p) level of theory for the Schiff base compound 2-[(2,4-Dimethylphenyl)iminomethyl]-6-methylphenol. Experimental and theoretical Fourier transform infrared (FT-IR) studies of the title compound show the preference of enol form, as supported by X-ray analysis results. Using the time-dependent density functional theory (TD-DFT) method, electronic absorption spectra of the compound have been predicted and a good agreement is determined with the experimental ones. To investigate the tautomeric stability, optimisation calculations at B3LYP/6-311++G(d,p) level were performed for the enol and keto forms of the title compound. Calculated results show that its enol form is more stable than that of the keto form. The predicted non-linear optical properties of the title compound are much greater than those of urea. The changes in thermodynamic properties for the formation of the title compound with the temperature ranging from 200 K to 500 K have been obtained using the statistical thermodynamic method. At 298.15 K the change of Gibbs free energy for the formation reaction of the title compound is 37.03 kJ/mol. The title compound cannot be spontaneously produced from the isolated monomers at room temperature. The tautomeric equilibrium constant is also computed as 1.23×10?3 at 298.15 K for enol ? keto tautomerisation of the title compound.  相似文献   

7.
Applying nonequilibrium Green's function formalism in combination with the first-principles density functional theory, we investigate the electronic transport properties of optical molecular switch based on the fulgide molecule with two different single-walled carbon nanotube (SWCNT) electrodes. The molecule that comprises the switch can convert between E isomer and C isomer by ultraviolet or visible irradiation. Theoretical results show that these two isomers exhibit very different conductance properties both in armchair and zigzag junction, which can realize the on and off states of the molecular switch. Meantime, the chirality of the SWCNT electrodes strongly affects the switching characteristics of the molecular junctions, which is useful for the design of functional molecular devices.  相似文献   

8.
Keto–enol tautomeric equilibrium and the mechanism of thermal conversion of 2- and 4-hydroxyacetophenone in gas phase have been studied by means of electronic structure calculations using density functional theory (DFT). A topological analysis of electron density evidence that the structure of keto and enol forms of 2-hydroxyacetophenone are stabilised by a relatively strong intramolecular hydrogen bond. 2- and 4-hydroxyacetophenone undergo deacetylation reactions yielding phenol and ketene. Two possible mechanisms are considered for these eliminations: the process takes place from the keto form (mechanism A), or occurs from the enolic form of the substrate (mechanism B). Quantum chemical calculations support the mechanism B, being found a good agreement with the experimental activation parameters. These results suggest that the rate-limiting step is the reaction of the enol through a concerted, non-synchronous, semi-polar, four-membered cyclic transition state (TS). The most advanced reaction coordinate in the TS is the rupture of O1···H1 bond, with an evolution in the order of 79.7%–80.9%. Theoretical results also suggest a three-step mechanism for the phenyl acetate formation from 2-hydroxyacetophenone.  相似文献   

9.
By using depopulation laser techniques, like IR-UV population labeling coupled to mass-selected R2PI detection, we confirm that four tautomers are responsible for the near UV spectroscopy (310-280 nm) of guanine: two enol and two keto forms, each pair having a 7NH and a 9NH form. Besides the UV spectroscopy of each tautomer, additional information on the excited state nature and dynamics is obtained from fluorescence studies. In particular, the quenching of fluorescence beyond 285 nm, the existence of a background absorption, as well as the existence of a strongly red-shifted component in the fluorescence emission provides evidence for a strong electronic mixing in the excited state together with an efficient non-radiative process. The details of these features are found to be tautomer-dependent. Comparison of the present results with literature data on other purine molecules, like adenine or 9-substituted guanines, enables us to propose a new insight on the spectroscopy and dynamics of the purine molecules. First, a large variability of the tautomer distribution in the gas phase is found within the purine family, in particular a molecular change, as simple as a 9-methylation on guanine, can reduce the tautomer distribution to a single species (enol form). Since the absorption spectrum is tautomer-dependent as well as substituent-dependent, it turns out that the tautomer population is one of the major parameters that control the overall shape of the UV spectrum. Second, the excited state model, often evoked in the literature, which involves electronic coupling between excited states of different natures, namely ππ* and nπ* states, might account for the present fluorescence measurements on guanine, providing an extensive excited state electronic mixing is assumed for these systems. Received 24 June 2002 Published online 13 September 2002  相似文献   

10.
Vera Deneva 《Molecular physics》2019,117(13):1613-1620
ABSTRACT

The tautomeric optical sensors based on 4-(phenyldiazenyl)naphthalen-1-ol exist in their pure enol tautomeric form as free ligands, while the addition of metal ion fully shifts the equilibrium towards the keto tautomer allowing a red shift in the measured absorbance. This effect is achieved when a side ionophore group is connected to a tautomeric backbone by a spacer in a way that stabilizes the enol form via hydrogen boding. When the ionophore captures the metal ion the keto form is stabilized due to C─O tautomeric group participation in the complex. In the current study, we model theoretically the effect of symmetric tweezer like ionophores (RCOXCOR, where X, being CH or N, is the linker to the tautomeric backbone) on the tautomeric state and complexation ability of 4-(phenyldiazenyl)naphthalen-1-ol containing ligands. It was found that enol form stabilisation is achieved when R?=?NMe2, independing on the linker. Both ligands are unsuitable for capturing alkali metal ions. The calculations predict that the complexation with alkali earth metal ions could lead to a full shift of the tautomeric equilibrium towards keto tautomer.  相似文献   

11.
By applying non-equilibrium Green’s function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.  相似文献   

12.
By applying nonequilibrium Green's function formalism combined with first-principles density functional theory, we investigate the electronic transport properties of a 1,3-diphenyltriazene-based optical molecular switch. The molecule that comprises the switch can convert between the cis and the trans forms upon photoexcitation. The transmission spectra of two forms are remarkably distinctive. Theoretical results show that the current through the trans form is significantly larger than that through the cis form, which suggests that this system has attractive potential application in future molecular switch technology.  相似文献   

13.
Spectral characteristics of methyl 2-hydroxynicotinate (MEHNA) have been studied using absorption, fluorescence excitation and fluorescence spectroscopy, as well as, using single photon counting nanosecond spectrofluorimeter. MEHNA is present as enol in less polar solvents and keto in polar media. In non-polar solvents, large Stokes shifted fluorescence band is assigned to phototautomer, formed by excited state intramolecular proton transfer (ESIPT), whereas fluorescence is only observed from keto form in polar solvents. In aqueous and polar solvents monocation (MC) is formed by protonating the exo carbonyl oxygen atom in the ground state (S0) and in the first excited singlet state (S1), MC is obtained by protonating carbonyl oxygen atom of the ester. It is formed by ESIPT from exo carbonyl proton to carbonyl oxygen atom of the ester. Dication is formed by protonating both the oxygen atoms. Two kinds of monoanions formed by deprotonating phenolic proton or >N-H proton of keto suggest the presence of enol and keto in aqueous solution. In cyclohexane MC is formed by protonating carbonyl oxygen in both S0 and S1 states. The electronic structure calculations were performed on each species using semi-empirical quantum mechanical AM1 method and density functional theory B3LYP with 6-31G** basis set using Gaussian 98 program, along with potential energy mapping, to characterize the particular species.  相似文献   

14.
Magnetite is the oldest magnet and the first material where the concept of a strong correlations driven metal–insulator transition was suggested and found at TV = 124 K in the so-called Verwey phase transformation. Recently, the structure below TV was solved revealing subtle electronic structure in the form of trimeron lattice that, according to yet another recent communication, may be switched within femtosecond range. In this review article, we argue that the same change of trimeron lattice can be achieved by a magnetic field, in the phenomenon called the easy axis switching. The results of many of our experiments show that although this process is best viewed by magnetization studies, it is also reflected in magnetostriction, causes some changes in electronic transport and can be observed microscopically by NMR that proved electronic order alteration. All those facts suggest that the axis switching process observed and studied by us is intimately linked with the fast change of electronic trimeron order mentioned above.  相似文献   

15.
We have studied the electronic transport properties of an optical molecular switch based on the diarylethene molecule with two single-walled carbon nanotube (SWCNT) electrodes using first-principles transport calculations. It is shown that the closed form shows an overall higher conductance than the open form at low bias which is independent of the SWCNTs’ chirality. Meanwhile, the conductance of the molecular switch can be tuned by changing the chirality of the SWCNTs.  相似文献   

16.
Abstract

o ?, m ? and p ? aminobenzoic acid hydrazide (ABAH) complexes with (NH4)2 Fe (So4)2 and Fe Cl3 were prepared with the type [ML2.2H2O] X. where X = Cl3 or SO4. The prepared complexes were investigated using IR, electronic and Mossbauer spectroscopes. The obtained results indicated that the iron ions are present in octahedrally coordinated Fe2+, and Fe3+ states.

Also the results reveal that all the complexes contain keto form, except m ? ABAH Fe (II) complex which contains enol form in addition to the keto form.  相似文献   

17.
Spectroscopic studies of the biologically active compound 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole (FABT), have been performed. Absorption studies in the UV-Vis region for FABT in polar solvents, like water or ethanol, exhibit the domination of the enol form over its keto counterpart, with a broad absorption band centered around 340 nm. In non-polar solvents such as n-heptane or heavier alkanes the 340 nm absorption band disappears and an increase of the band related to the keto form (approximately 270 nm) is observed. Fluorescence spectra (with 270 nm and 340 nm excitation energies used) show a similar dependence: for FABT in 2-propanol a peak at about 400 nm dominates over that at 330 nm while in n-heptane this relation is reversed. The solvent dependent equilibrium between the keto and enol forms is further confirmed by FTIR and Raman spectroscopies. As can be expected, this equilibrium also shows some temperature dependences. We note that the changes between the two tautomeric forms of FABT are not related to the permanent dipole moment of the solvent but rather to its dipole polarizability.  相似文献   

18.
Based on the nonequilibrium Green function method and density functional theory calculations,we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular switch.The molecule comprises the switch which can exhibit different chiralities,that is,cis-form and trans-form by ultraviolet or visible irradiation.The results clearly reveal that the switching behaviors can be realized when the molecule converts between cis-form and trans-form.Furthermore,the on-off ratio can be modulated by the chirality of the carbon nanotube electrodes.The maximum on-off ratio can reach 109 at 0.4 V for the armchair junction,suggesting potential applications of this type of junctions in future design of functional molecular devices.  相似文献   

19.
In nanoscale memristive switching devices, the statistical distribution of resistance values and other relevant parameters for device operation often exhibits a lognormal distribution, causing large fluctuations of memristive analog state variables after each switching event, which may be problematic for digital nonvolatile memory applications. The state variable w in such devices has been proposed to be the length of an undoped semiconductor region along the thickness of the thin film that acts as a tunnel barrier for electronic transport across it. The dynamical behavior of w is governed by the drift diffusion of ionized dopants such as oxygen vacancies. Making an analogy to scanning tunneling microscopes (STM), a closed-loop write scheme using current feedback is proposed to switch the memristive devices in a controlled manner. An integrated closed-loop current driver circuit for switching a bipolar memristive device is designed and simulated. The estimated upper limit of the feedback loop bandwidth is in the order of 100 MHz. We applied a SPICE model built upon the TiO2 memristive switching dynamics to simulate the single-device write operation and found the closed-loop write scheme caused a narrowing of the statistical distribution of the state variable w.  相似文献   

20.
傅潇潇  张丽霞  李宗良  王传奎 《中国物理 B》2013,22(2):28504-028504
The electronic transport properties of a new kind of molecular switches-bi-OPE-monothiol molecular switches-were studied by applying first-principles calculations and generalized elastic scattering Green’s function.The numerical results show that,for a bi-OPE-molecule junction,the offset face-to-face configuration induces more delocalized molecular orbitals,and results in higher conductivity than the parallel face-to-face configuration,so it can be used as a molecular switch.The side substituent groups containing more delocalized electrons can strengthen the intermolecular coupling and raise the conductivities of bi-OPE-monothiol molecular devices.On the basis of the investigations,we find a scheme to enhance the open-close ratios of bimolecular switches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号