首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Molecular physics》2012,110(21-22):2645-2663
N2-broadened line widths and N2-pressure induced line shifts have been measured for transitions in the ν1?+?ν3 band of acetylene at seven temperatures in the range 213–333?K to obtain the temperature dependences of broadening and shift coefficients. For the room-temperature spectra the line mixing effects have been also investigated. The Voigt and hard-collision line profile models were used to retrieve the line parameters. All spectra were recorded using a 3-channel tuneable diode laser spectrometer. The line-broadening and line-shifting coefficients as well as their temperature-dependence parameters have been also evaluated theoretically, in the frame of a semi-classical approach based on an exponential representation of the scattering operator, an intermolecular potential composed of electrostatic quadrupole–quadrupole and pairwise atom–atom interactions as well as on exact trajectories driven by an effective isotropic potential.  相似文献   

2.
A. M. El Mahdy 《Molecular physics》2013,111(22):3531-3544
Hydrogen storage reactions on Pd-doped C60 fullerene are investigated by using the state-of-the-art density functional theory calculations. The Pd atom prefers to bind at the bridge site between two hexagonal rings, and can bind up to four hydrogen molecules with average adsorption energies of 0.61, 0.45, 0.32, and 0.21 eV per hydrogen molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 5.8 wt%. While the desorption activation barriers of the complexes nH2 + Pd–C60 with n = 1 are outside the department of energy (DOE) domain (?0.2 to ?0.6 eV), the desorption activation barriers of the complexes nH2 + Pd–C60 with n = 2–4 are inside this domain. While the interaction of 1H2 with Pd + C60 is irreversible at 459 K, the interaction of 2H2 with Pd + C60 is reversible at 529 K. The hydrogen storage of the irreversible 1H2 + Pd–C60 and reversible 2H2 + Pd–C60 interactions are characterised in terms of densities of states, infrared, Raman, and proton magnetic resonance spectra, electrophilicity, and statistical thermodynamic stability.  相似文献   

3.
The unit cell parameters of an [NH2(C2H5)2]2CuCl4 crystal are determined using x-ray diffraction analysis, and the thermal expansion coefficients along the principal crystallographic directions are calculated in the temperature range 100–330 K. The behavior of the intensities of the diffraction reflections from the (100), (010), and (001) crystallographic planes is studied in the vicinity of the thermochromic phase transition temperature. The occurrence of a first-order phase transition in the [NH2(C2H5)2]2CuCl4 crystal at T ≈ 324 K is confirmed experimentally.  相似文献   

4.
For inspection of thermal behaviors of sodium (Na) atom in the bulk and on the surface of two layered hydrogen terminated cluster model, 2C150H30, the molecular dynamics calculation was taken place at molecular mechanics 2 level. From the requirement of structural optimization, interlayer distance of 2C150H30 is 3.38 Å which is consistent with the observed value. In the cluster models intercalated and adsorbed by one Na atom, C150H30·Na·C150H30 and Na·2C150H30, respectively, the Na atom is stabilized beneath and above the nearest central carbon atom, C0, in the upper layer where the distances, Na-C0, are 2.76 and 3.16 Å, respectively. Adsorption of the Na atom to the surface has no influence on the geometrical structure of cluster model, whereas, intercalation to two layers expands the interlayer distance maximally to 5.01 Å which will be responsible for the carbon expansion of graphite electrode in cryolite melt-alumina slurries. Diffusion processes are observed above 200 K for the Na atoms stabilized in both sites. Although the Na atom migrates parallel to the layers in the range between 200 and 300 K in C150H30·Na·C150H30, it moves above the carbon layer from the center to the circumference periodically below 250 K and gets out at 300 K for Na·2C150H30. The migration rates of Na atom are almost the same irrespective of the diffusion areas.  相似文献   

5.
《Molecular physics》2012,110(21-22):2761-2771
An ab initio potential energy surface determined at the CCSD(T) level of theory is presented for the van der Waals complex C2H2–N2. Additional calculations performed with the HF- and DFT- SAPT methods compare well with the CCSD(T) results and allow a better understanding of the main features of this interaction potential surface. An expansion of this surface over spherical harmonics has also been performed. The global energy minimum of the complex is obtained for the linear conformation. The T conformations are the least attractive. Such characteristics mainly arise because of the variation, in sign and in absolute value of the electrostatic energy between all these conformations. The specific role of the quadrupole–quadrupole interaction which involves two moments of opposite signs is therefore examined. The main features derived from the present surface are compared and discussed according to the following relevant systems: N2–H2, C2H2–H2, C2H2–C2H2 and N2–N2. Calculated rotational constants for selected conformations of the C2H2–N2 dimer are found to be in good agreement with available values.  相似文献   

6.
The emission spectra of C2(d3Πg–a3Πu), CH(A2Δ–X2Π), and CH(B2Σ–X2Π) bands are analysed to measure rotational Trot, vibrational Tvib, and gas temperature Tg from Ar/C2H2 (5–20% C2H2) microwave‐induced plasma (MIP). In case when helium and hydrogen are used in the gas mixture instead of argon, no significant change in Trot is noticed. Both studied temperatures are insensitive in terms of the C2H2 percentage. From CH(0–0, A2Δ–X2Π) band R2 branch lines, two Trot (Trot ~ 520–580 K for J′ = 3–9 and Trot ~ 1,700–1,800 K for J′ = 10–17) are determined. The lower Trot equals the Tg (500–700 K) measured from C2 bands in this study. The H2 Fulcher‐α diagonal bands are recorded as well in the H2/C2H2 mixtures and Trot~750–900 K of the H2 ground state measured. Tvib ~ 6,000 K in Ar/C2H2 MIP is calculated from the integral intensity ratio of C2(2,1) and C2(3,2) bands.  相似文献   

7.
Pressure-broadening parameters of six lines belonging to the ν5 band of C2H2 in collision with N2 have been measured with a tunable diode-laser spectrometer in order to complete up to J = 33 our earlier measurements (D. Lambot, G. Blanquet, and J. P. Bouanich, J. Mol. Spectrosc.136, 86–92 (1989)) on the broadening of C2H2 by N2 and O2 at 297 K. These N2- and O2-broadening coefficients have been first calculated on the basis of the Anderson-Tsao-Curnutte theory; in this approach, we show that the short-range interactions which contribute significantly to the linewidths are not correctly treated. Next, we consider the improved semiclassical model proposed by Robert and Bonamy. The intermolecular potential consists in the addition of the atom-atom interaction model to the quadrupolar interactions. The limited radial spherical harmonics expansion of the atom-atom potential, from which expressions for the differential cross section were derived, appears to be quite insufficient at short intermolecular distances. Therefore, we use a more accurate representation of this potential, avoiding an inadequate truncation and keeping the analytic expressions obtained by Bonamy and Robert. In the calculations we take into account the contributions derived from the radial functions U000(r), U200(r), and U220(r), as well as from U400(r). A theoretical expression is obtained for the U400 contribution to the differential cross section. The results of the calculations arising from the exact radial expansion of the atom-atom potential appear to be significantly larger for high J lines than those arising from the truncated expansion. The latter results, which do not include adjustable atom-atom parameters, are in good agreement with experimental broadening coefficients for C2H2---O2 and in reasonable agreement (except at large J values) for C2H2---N2. It is also shown that the contributions to the linewidths derived from U400 are rather small for C2H2---N2 and more important for C2H2---O2. Finally, by calculating the collisional linewidths of C2H2---N2 and C2H2---O2 at 200 K, we have predicted their temperature dependences.  相似文献   

8.
Nitromethane has many applications, such as in racing, as a gasoline fuel additive, and as a monopropellant. Despite a large number of studies and the small size of the molecule, the combustion chemistry of nitromethane is still not well understood. To improve models, the pyrolysis of nitromethane (CH3NO2) was investigated experimentally in shock tubes and in a micro flow reactor with a controlled temperature profile (MFR), under dilute conditions. Several spectroscopic diagnostics were used in the shock tubes to follow the concentration time histories of CO, H2O (both using IR laser absorption), and CH3NO2 (UV light absorption). A quadrupole mass spectrometer was used to measure CH3NO2, NO2, CH4, C2H4, and C2H2 at various temperatures with the MFR. These unique experimental results were compared to modern, detailed kinetics models from the literature, and no mechanism was able to reproduce these data over the wide range of conditions investigated. Predictions for the CO and H2O levels were generally inaccurate, and the CH4, C2H4, and C2H2 predictions were poor in most cases for the MFR data. Importantly, all models largely differ in their predictions. A numerical analysis was performed to identify ways to improve the next generation of nitromethane models. Results indicate that nitromethane decomposition needs to be improved below 1050 K, and that hydrocarbon-NOx interactions still need to be further investigated.  相似文献   

9.
《Surface science》1986,166(1):L141-L147
Values of the coefficients C3 and C5 which describe the asymptotic potential energy between an atom or molecule and a surface, and the constants Cs1 and Cs2 which characterize the surface mediation of the long-range atom(molecule)-atom(molecule) interaction, are calculated for rare gas and alkali or simple molecules, such as NO, H2, and H2O, adsorbed on noble and transition metals. These calculated results are obtained using analytic representations of the atomic polarizability and a numerical treatment of the substrate dielectric response obtained from measured optical constants.  相似文献   

10.
In the present study, the adsorption behaviour of methanol (CH3OH) and ethanol (C2H5OH) molecules over heterofullerene C59B surface is studied by density functional theory calculations. This heterofullerene is obtained from C60 by substituting a carbon atom with a boron atom and relaxing self-consistently the structure to the local minimum. The adsorption of CH3OH and C2H5OH on the C59B is exothermic and the relaxed geometries are stable. The CH3OH and C2H5OH adsorption can also induce a change in the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy gap of the nanocage. The dehydrogenation pathways of CH3OH and C2H5OH via O–H and C–H bonds scission are also examined. The results indicate that O–H bond scission is the most favourable pathway on the C59B surface.  相似文献   

11.
For investigation of thermal behaviors of hydrogen (H) atom in a graphite intercalated compound (GIC), the molecular dynamic (MD) procedure at the molecular mechanics 2 (MM2) level was applied to a hydrogen terminated cluster model composed of two layers of C150H30 plane. On the basis of the optimized structure, one intercalated H atom was stabilized at the mass center of the cluster model. According to the trajectory of the intercalated H atom, the diffusion is initiated at 100 K towards lower potential energy area in the periphery of the cluster model. The diffusion rate increased with the increase in the simulation temperature from 100 to 500 K. According to the extended Hückel calculation, the band gap of graphite is broadened by 0.1 eV with the intercalation. Thus, the present MD simulation proposed that the semiconductivity of GIC is promoted due to the development of the ionic conductivity. However, H atom adsorbed on the surface of C150H30 plane formed the stable covalent bond with a host carbon atom and made little contribution to the conductivity.  相似文献   

12.
13.
M. Nath  P. Kumar  Sulaxna 《光谱学快报》2013,46(5):268-273
ABSTRACT

The geometry of the four-coordinated Sn atom in the title compound, (CH3)3Sn(C2H2N3S2), is distorted tetrahedral with three Sn–C bonds and one Sn–S bond. Two crystallographically distinct molecules a and b within the asymmetric unit are hydrogen bonded. Intermolecular “N–H?N” hydrogen bond interactions generate infinite 1D chains consisting of alternating, centrosymmetric R2,2(8) and R4,2(10) rings.  相似文献   

14.
Transport coefficients (shear viscosity, volume viscosity, thermal conductivity, and mass and thermal diffusion coefficients) of H–N2 mixtures in the dilute-gas limit have been calculated from the intermolecular potential in the temperature range 300–2000K using the classical trajectory method. The intermediate results pertaining to H–N2 binary interactions are reported, mainly in terms of cross-section ratios. Cross-sections evaluated with the Mason–Monchick approximation yield very good results for this system, the largest deviations, about 2.5%, being observed for the thermal diffusion coefficient. The accuracy here of this approximation can primarily be attributed to a light H atom and a weakly non-spherical potential resulting in a high rotational collision number. Furthermore, we investigate to which H–N2 cross-sections and their ratios the values of the mixture transport coefficients are most sensitive. Our results indicate that, for some cross-section ratios, reliance on universal correlations at high temperatures, often used in flame codes, can induce sizeable errors in the thermal conductivity coefficient and especially in the thermal diffusion coefficients. We also observed that the volume viscosity is particularly sensitive to the value of the cross-section for internal energy relaxation in H–N2 collisions.  相似文献   

15.
FT‐Raman spectra were obtained for thiophenol (TP) and TP on gold nanoparticles. All vibrational fundamentals for the TP molecule are assigned on the basis of the scaled quantum force field procedure. Three model systems are studied and compared for the interactions of TP with the Au atom: (1) TP with a Au atom, C6H5SH Au; (2) TP anion with a Au atom, C6H5S Au; and (3) TP with a Au atom and subsequent formation of thiophenylate, C6H5SAu. The equilibrium structures and Raman spectra were calculated for the model systems using density functional theory (DFT) with the B3LYP functionals and the mixed basis set 6‐311 + G** (for C, S, H) and LANL2DZ (for Au), and theoretical Raman wavenumbers of C6H5SAu and C6H5S Au were assigned according to potential energy distributions. The third model system is shown to be preferred over the other two. The calculated binding energies are also shown to support the third model system. It is suggested that a simple model, such as the one used in the present study, is reasonable to describe surface‐enhanced Raman spectroscopy of thiophenol adsorbed on gold nanoparticles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Yuhai Hu  Keith Griffiths   《Surface science》2008,602(17):2949-2954
Fourier transform infra red reflection–absorption spectroscopy (FTIR-RAS), thermal desorption spectroscopy (TDS), and auger electron spectroscopy (AES), were employed to explore the mechanism of NO reduction in the presence of C2H4 on the surface of stepped Pt(3 3 2). Both NO–Pt and C2H4–Pt interactions are enhanced when NO and C2H4 are co-adsorbed on Pt(3 3 2). As a result, C2H4 is dissociated at surface temperatures as low as 150 K, and the N–O stretch band is weakened. The presence of post-exposed C2H4 leads NO desorption from steps to decrease significantly, but the same effect on NO desorption from terraces becomes appreciable only at higher post-exposures of C2H4, e.g., 0.6 L and 1.2 L, and proceeds to a much slighter extent. Auger spectra indicate that as a result of the reaction with O from NO dissociation, the amount of surface C species is greatly reduced when NO is post-exposed to a C2H4 adlayer. It is concluded that reduction of NO in the presence of C2H4 proceeds very effectively on the surface of the Pt(3 3 2), through a mechanism of NO dissociation and subsequent O removal. Following this mechanism, the significant dissociation of adsorbed NO molecules on steps at surface temperatures below 400 K, and subsequent rapid reaction between the resultant O and C-related species, accounts for the considerable amount of N2 desorption at temperatures below 400 K.  相似文献   

18.
This work was devoted to X-ray diffraction study and investigations of temperature changes of the optical absorption edge of (NH2(C2H5)2)2CoCl4 crystals in the region of possible phase transitions. The X-ray powder diffraction data revealed the monoclinic phase at room temperature – space group P2/n. The cobalt atom was found to be square-plane coordinated by four chlorine atoms resulting [CoCl4]2– anion, which is surrounded by two DEA+ cations. It was shown that the low-energy tail of the absorption edge in these materials possesses an exponential shape. In the temperature range above 255?K it follows the empirical Urbach’s rule. The obtained experimental data confirmed the existence of the ferroelastic phase in (NH2(C2H5)2)2CoCl4 in the temperature range between 255 and 326?K. The anomalous behaviour of the investigated parameters observed at the temperatures below 255?K would be related to earlier unknown phase transitions.  相似文献   

19.
99Ru Mössbauer spectra at 5 K have been measured on samples of salts of ruthenocene with halogens, expressed as [Ru(C5H5)2X]Y (X=Cl, Br, Y=PF6, and X=1, Y=13). The values of both the isomer shift and the quadrupole splitting of these salts with halogens are larger compared to those of ruthenocene. It is concluded that ruthenocene gives salts having direct chemical bonding between Ru and Cl, Br, or I, and that the Ru atom in each salt is in a higher oxidation state than 2+ in ruthenocene.  相似文献   

20.
Perturbed γ???γ angular correlation spectroscopy (PAC) has been used to investigate the hyperfine interactions in the intermetallic compound CePd2Si2 using 111In→111Cd probe nuclei. Samples of CePd2Si2 were prepared by melting constituent elements in an arc furnace under pure argon atmosphere. Carrier-free 111In nuclei were introduced into the samples by thermal diffusion at 800°C in vacuum during 12 h. The measurements were performed in the temperature range of 4.2–300 K. Above the magnetic transition temperature (T N ?=?10 K), the results show two distinct and well defined quadrupole interactions that were assigned to probe nuclei occupying Ce and Si sites in the compound. The quadrupole frequencies were found to decrease linearly with increasing temperature. The PAC spectra taken below 10 K were analyzed with a model including combined electric quadrupole plus magnetic dipole interactions, from which the hyperfine magnetic field was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号