首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the design and synthesis of new fully biodegradable thermoresponsive amphiphilic poly(γ‐benzyl L ‐glutamate)/poly(ethyl ethylene phosphate) (PBLG‐b‐PEEP) block copolymers by ring‐opening polymerization of N‐carboxy‐γ‐benzyl L ‐glutamate anhydride (BLG? NCA) with amine‐terminated poly(ethyl ethylene phosphate) (H2N? PEEP) as a macroinitiator. The fluorescence technique demonstrated that the block copolymers could form micelles composed of a hydrophobic core and a hydrophilic shell in aqueous solution. The morphology of the micelles as determined by transmission electron microscopy (TEM) was spherical. The size and critical micelle concentration (CMC) values of the micelles showed a decreasing trend as the PBLG segment increased. However, UV/Vis measurements showed that these block copolymers exhibited a reproducible temperature‐responsive behavior with a lower critical solution temperature (LCST) that could be tuned by the block composition and the concentration.  相似文献   

2.
Poly(acrylic acid-b-styrene) (PAA-b-PS) amphiphilic block copolymers were synthesized by consecutive telomerization of tert-butyl acrylate, atom transfer radical polymerization (ATRP) of styrene, and hydrolysis. The resulting block copolymers were characterized by 1H NMR and GPC. These amphiphilic block copolymeric micelles were prepared by dialysis against water. Transmission electron micrograph (TEM) and laser particle sizer measurements were used to determine the morphology and size of these micelles. The results showed that these amphiphilic block copolymers formed spherical micelles with average size of 140–190?nm. The critical micelle concentration (CMC) and the kinetic stability of these micelles were investigated by fluorescence technique, using pyrene as a fluorescence probe. The observed CMC value was in the range of 0.075–0.351?mg/L. Kinetic stability studies showed that the stability of micelles increased with the decrease of the pH value of the solution.  相似文献   

3.
An approach for the preparation of block copolymer vesicles through ultrasonic treatment of polystyrene‐block‐poly(2‐vinyl pyridine) (PS‐b‐P2VP) micelles under alkaline conditions is reported. PS‐b‐P2VP block copolymers in toluene, a selective solvent for PS, form spherical micelles. If a small amount of NaOH solution is added to the micelles solution during ultrasonic treatment, organic‐inorganic Janus‐like particles composed of the PS‐b‐P2VP block copolymers and NaOH are generated. After removal of NaOH, block copolymer vesicles are obtained. A possible mechanism for the morphological transition from spherical micelles to vesicles or Janus‐like particles is discussed. If the block copolymer micelles contain inorganic precursors, such as FeCl3, hybrid vesicles are formed, which may be useful as biological and chemical sensors or nanostructured templates. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 953–959  相似文献   

4.
Amphiphilic diblock copolymers with various block compositions were synthesized on poly(2‐ethyl‐2‐oxazoline) (PEtOz) as a hydrophilic block and poly(4‐methyl‐ε‐caprolactone) (PMCL) or poly(4‐phenyl‐ε‐caprolactone) (PBCL) as a hydrophobic block. These PEtOz‐b‐PMCL and PEtOz‐b‐PBCL copolymers consisting of soft domains of amorphous PEtOz and PM(B)CL had no melting endothermal peaks but displayed Tg. The lower critical solution temperature (LCST) values for the PEtOz‐b‐PMCL, and the PEtOz‐b‐PBCL aqueous solution were observed to shift to lower temperature than PEtOz homopolymers. Their aqueous solutions were characterized using fluorescence techniques and dynamic light scattering (DLS). The block copolymers formed micelles with critical micelle concentrations (CMCs) in the range 0.6–11.1 mg L?1 in an aqueous phase. As the length of the hydrophobic PMCL or PBCL blocks elongated, lower CMC values were generated. The mean diameters of the micelles were between 127 and 318 nm, with PDI in the range of 0.06–0.21, suggesting nearly monodisperse size distributions. The drug entrapment efficiency and drug‐loading content of micelles depend on block polymer compositions. In vitro cell viability assay showed that PEtOz‐b‐PMCL has low cytotoxicity. Doxorubicin hydrochloride (DOX)‐loaded micelles facilitated human cervical cancer (HeLa) cell uptake of DOX; uptake was completed within 2 h, and DOX was able to reach intracellular compartments and enter the nuclei by endocytosis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2769–2781  相似文献   

5.
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   

6.
Applications of metal‐free living cationic polymerization of vinyl ethers using HCl · Et2O are reported. Product of poly(vinyl ether)s possessing functional end groups such as hydroxyethyl groups with predicted molecular weights was used as a macroinitiator in activated monomer cationic polymerization of ε‐caprolactone (CL) with HCl · Et2O as a ring‐opening polymerization. This combination method is a metal‐free polymerization using HCl · Et2O. The formation of poly(isobutyl vinyl ether)‐b‐poly(ε‐caprolactone) (PIBVE‐b‐PCL) and poly(tert‐butyl vinyl ether)‐b‐poly(ε‐caprolactone) (PTBVE‐b‐PCL) from two vinyl ethers and CL was successful. Therefore, we synthesized novel amphiphilic, biocompatible, and biodegradable block copolymers comprised polyvinyl alcohol and PCL, namely PVA‐b‐PCL by transformation of acid hydrolysis of tert‐butoxy moiety of PTBVE in PTBVE‐b‐PCL. The synthesized copolymers showed well‐defined structure and narrow molecular weight distribution. The structure of resulting block copolymers was confirmed by 1H NMR, size exclusion chromatography, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5169–5179, 2009  相似文献   

7.
Mixed micelles of polystyrene‐b‐poly(N‐isopropylacrylamide) (PS‐b‐PNIPAM) and two polystyrene‐b‐poly(ethylene oxide) diblock copolymers (PS‐b‐PEO) with different chain lengths of polystyrene in aqueous solution were prepared by adding the tetrahydrofuran solutions dropwise into an excess of water. The formation and stabilization of the resultant mixed micelles were characterized by using a combination of static and dynamic light scattering. Increasing the initial concentration of PS‐b‐PEO in THF led to a decrease in the size and the weight average molar mass (〈Mw〉) of the mixed micelles when the initial concentration of PS‐b‐ PNIPAM was kept as 1 × 10?3 g/mL. The PS‐b‐PEO with shorter PS block has a more pronounced effect on the change of the size and 〈Mw〉 than that with longer PS block. The number of PS‐b‐PNIPAM in each mixed micelle decreased with the addition of PS‐b‐PEO. The average hydrodynamic radius 〈Rh〉 and average radius of gyration 〈Rg〉 of pure PS‐b‐PNIPAM and mixed micelles gradually decreased with the increase in the temperature. Both the pure micelles and mixed micelles were stable in the temperature range of 18 °C–39 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1168–1174, 2010  相似文献   

8.
To prepare water‐soluble, syndiotacticity‐rich poly(vinyl alcohol) (PVA) microfibrils for various industrial applications, we synthesized syndiotacticity‐rich, low molecular weight PVA by the solution polymerization of vinyl pivalate (VPi) in tetrahydrofuran (THF) at low temperatures with 2,2′‐azobis(2,4‐dimethylvaleronitrile) (ADMVN) as an initiator and successive saponification of poly(vinyl pivalate) (PVPi). Effects of the initiator and monomer concentrations and the polymerization temperature were investigated in terms of the polymerization behaviors and molecular structures of PVPi and the corresponding syndiotacticity‐rich PVA. The polymerization rate of VPi in THF was proportional to the 0.91 power of the ADMVN concentration, indicating the heterogeneous nature of THF polymerization. The low‐temperature solution polymerization of VPi in THF with ADMVN proved to be successful in obtaining water‐soluble PVA with a number‐average degree of polymerization (Pn) of 300–900, a syndiotactic dyad content of 60–63%, and an ultimate conversion of VPi into PVPi of over 75%. Despite the low molecular weight of PVA with Pn = 800, water‐soluble PVA microfibrillar fibers were prepared because of the high level of syndiotacticity. In contrast, for PVA with Pn = 330, shapeless and globular morphologies were observed, indicating that molecular weight has an important role in the in situ fibrillation of syndiotacticity‐rich PVA. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1103–1111, 2002  相似文献   

9.
Brush-like block copolymers with poly(t-butyl methacrylate) (PBMA) and poly(N-isopropylacrylamide) (PNIPAAm) as side arms, PBMA-b-PNIPAAm, were designed and synthesized via a simple free radical polymerization route. The chemical structure and molecular weight of these polymer brushes were characterized and determined by nuclear magnetic resonance (1H NMR), Fourier transform infrared spectrometry (FTIR) and gel permeation chromatography (GPC). The micellar formation by these polymer brushes in aqueous solutions were detected by a surface tension technique, and the critical micelle concentration (CMC) ranged from 1.53 to 8.06 mg L−1. The morphology and geometry of polymer micelles were investigated by transmission electron microscope (TEM) and dynamic light scattering (DLS). The polymer micelles assume the regularly-spherical core-shell structure with well-dispersed individual nanoparticles, and the particle size was in the range from 36 to 93 nm. The PNIPAAm segments exhibited a thermoreversible phase transition, so the resulting block polymer brushes were temperature-sensitive and the low critical solution temperature (LCST) was determined by UV-vis spectrometer at about 28.82–29.40°C. The characteristic parameters of the polymer micelles such as CMC, micellar size and LCST values were affected by their compositional ratios and the length of hydrophilic or hydrophobic chains. The evaluation for caffeine drug release behavior of the block polymer micelles demonstrated that the self-assembled micelles exhibited thermal-triggered properties in controlled drug release.  相似文献   

10.
Fluorine‐containing amphiphilic ABA triblock copolymers, poly(2‐hydroxyethyl vinyl ether)‐block‐poly[2‐(2,2,3,3,3‐pentafluoropropoxy)ethyl vinyl ether]‐block‐poly(2‐hydroxyethyl vinyl ether) [poly(HOVE‐b‐PFPOVE‐b‐HOVE)] (HFH), poly[2‐(2,2,3,3,3‐pentafluoropropoxy)ethyl vinyl ether]‐block‐poly(2‐hydroxyethyl vinyl ether)‐block‐poly[2‐(2,2,3,3,3‐pentafluoropropoxy)ethyl vinyl ether] [poly(PFPOVE‐b‐HOVE‐b‐PFPOVE)] (FHF), and poly(n‐butyl vinyl ether)‐block‐poly(2‐hydroxyethyl vinyl ether)‐block‐poly(n‐butyl vinyl ether) [poly(NBVE‐b‐HOVE‐b‐NBVE)] (LHL), were synthesized, and their behavior in water was investigated. The aforementioned polymers were prepared by sequential living cationic polymerization of 2‐acetoxyethyl vinyl ether (AcOVE) and PFPOVE or NBVE, followed by hydrolysis of acetyl groups in polyAcOVE. FHF and LHL formed a hydrogel in water, whereas HFH gave a homogeneous aqueous solution. In addition, the gel‐forming concentration of FHF was much lower than that of corresponding LHL. Surface‐tension measurements of the aqueous polymer solutions revealed that all the triblock copolymers synthesized formed micelles or aggregates above about 1.0 × 10?4 mol/L. The surface tensions of HFH and FHF solutions above the critical micelle concentration were lower than those of LHL, indicating high surface activity of fluorine‐containing triblock copolymers. Small‐angle X‐ray scattering measurements revealed that HFH formed a core‐shell sperical micelle in 1 wt % aqueous solutions, whereas the other block copolymers caused more conplicated assembly in the solutions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3751–3760, 2001  相似文献   

11.
A series of water‐soluble siloxane polymers with pendent phosphorylcholine (PC) and sulfobetaine (SB) zwitterions was prepared using thiol‐ene “click” chemistry. Specifically, well‐defined vinyl‐substituted siloxane homopolymers and block copolymers were functionalized with small molecule zwitterionic thiols at room temperature. Rapid and quantitative substitution of the pendent vinyl groups was achieved, and zwitterionic polysiloxanes of narrow molecular weight distribution were obtained. The PC‐ and SB‐substituted polymers were found to be readily soluble in pure, salt‐free water. Critical micelle concentrations (CMCs) of these polymers in water were measured using a pyrene fluorescence probe, with CMC values estimated to be <0.01 g/L. Polymer aggregates were studied by dynamic light scattering, and the micelles generated from the PC block copolymers were visualized, after drying, by transmission electron microscopy. Aqueous solutions of these zwitterionic polysiloxanes significantly reduced the oil‐water interfacial surface tension, functioning as polymer amphiphiles that lend stability to oil‐in‐water emulsions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 127–134  相似文献   

12.
Metallo-supramolecular diblock copolymers consisting of a polystyrene (PS) block connected to a poly(ethylene oxide) (PEO) block by a bis(terpyridine)ruthenium complex (PS20-[Ru]-PEO y ) were used to prepare aqueous micelles. The length of the PS block was kept constant, while two PEOs of different molecular weight were used. The resulting hydrated micelles and aggregates were characterized by a combination of cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering measurements. The results were compared to those obtained for a covalent counterpart (PS22-b-PEO70). Cryogenic transmission electron microscopy allowed visualization of the PS core of the micelles. Moreover, the aggregates result from clustering of individual micelles.  相似文献   

13.
Well‐defined tertiary amine‐based pH‐responsive homopolymers and block copolymers were synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using 4‐cyanopentanoic acid dithiobenzoate (CPAD) as the RAFT agent for homopolymers and a poly(ethylene glycol) (PEG) macro‐RAFT agent for the block copolymers. 1H NMR and gel permeation chromatography results confirmed the successful synthesis of these homopolymers and block copolymers. Kinetics studies indicated that the formation of both the homopolymers and the block copolymers were well defined. The pKa titration experiments suggested that the homopolymers and the related block copolymers have a similar pKa. The dynamic light scattering investigation showed that all of the block copolymers underwent a sharp transition from unimers to micelles around their pKa and the hydrodynamic diameter (Dh) was not only dependent on the molecular weight but also on the composition of the block copolymers. The polymer solution of PEG‐b‐PPPDEMA formed the largest micelle compare to the PEG‐b‐PDPAEMA and PEG‐b‐PDBAEMA with a similar molecular weight. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1010–1022  相似文献   

14.
Thermosensitive polylactide‐block‐poly(N‐isopropylacrylamide) (t‐PLA‐b‐PNIPAAm) tri‐armed star block copolymers were synthesized by atom transfer radical polymerization (ATRP) of monomer NIPAAm using t‐PLA‐Cl as macroinitiator. The synthesis of t‐PLA‐Cl was accomplished by esterification of star polylactides (t‐PLA) with 2‐chloropropionyl chloride using trimethylolpropane as a center molecule. FT‐IR, 1H NMR, and GPC analyses confirmed that the t‐PLA‐b‐PNIPAAm star block copolymers had well‐defined structure and controlled molecular weights. The block copolymers could form core‐shell micelle nanoparticles due to their hydrophilic‐hydrophobic trait in aqueous media, and the critical micelle concentrations (CMC) were from 6.7 to 32.9 mg L?1, depending on the system composition. The as‐prepared micelle nanoparticles showed reversible phase changes in transmittance with temperature: transparent below low critical solution temperature (LCST) and opaque above the LCST. Transmission electron microscopy (TEM) observations revealed that the micelle nanoparticles were spherical in shape with core‐shell structure. The hydrodynamic diameters of the micelle nanoparticles depended on copolymer compositions, micelle concentrations and media. MTT assays were conducted to evaluate cytotoxicity of the camptothecin‐loaded copolymer micelles. Camptothecin drug release studies showed that the copolymer micelles exhibited thermo‐triggered targeting drug release behavior, and thus had potential application values in drug controlled delivery. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4429–4439  相似文献   

15.
In this article, we report the first micellization study of amphiphilic copolymers composed of bacterial medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs). A series of diblock copolymers based on fixed poly(ethylene glycol) (PEG) block (5000 g mol(-1)) and a varying poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate) (PHOHHx) segment (1500-7700 g mol(-1)) have been synthesized using "click" chemistry. These copolymers self-assembled to form micelles in aqueous media. The influence of PHOHHx block molar mass on the hydrodynamic size and on the critical micelle concentration (CMC) has been studied using dynamic light scattering and fluorescence spectroscopy, respectively. With increasing PHOHHx length, narrowly distributed micelles with diameters ranging from 44 to 90 nm were obtained, with extremely low CMC (up to 0.85 mg/L). Cryogenic transmission electron microscopy (Cryo-TEM) showed that micelles took on a spherical shape and exhibited narrow polydispersity. Finally, the colloidal stability of the micelles against physiological NaCl concentration has been demonstrated, suggesting they are promising candidates for drug delivery applications.  相似文献   

16.
The formation of micelles of Pluronic block copolymers in poly(ethylene glycol) (PEG) was studied using fluorescence, solubilization measurements, and frozen fracture electron microscopy (FFEM) methods at 40 degrees C. It was discovered that surfactants L44 (EO(10)PO(23)EO(10)), P85 (EO(26)PO(40)EO(26)), and P105 (EO(37)PO(56)EO(37)) can form micelles in PEG 200 (PEG with a nominal molecular weight of 200), and the critical micellization concentration (CMC) decreases with increasing molecular weight of the surfactants. The size of the micelles formed by these Pluronic block copolymers is in the range of 6-35 nm. The CMC values in PEG 200 are higher than those in aqueous solutions.  相似文献   

17.
A series of amphiphilic polyisobutylene-block-poly(vinyl alcohol) (PIB-b-PVA) copolymers of constant PIB and varying PVA block length was synthesized by living carbocationic polymerization and their solution behavior was studied. The synthesis involved the preparation of polyisobutylene-b-poly(tert.-butyl vinyl ether) followed by hydrolysis with hydrogen bromide. The copolymers were characterized by gel permeation chromatography, 1H-NMR, and MALDI-TOF MS methods. The micellization behavior of the copolymers was investigated in aqueous media by direct dissolution and dialysis using static and dynamic light scattering. The critical micelle concentration, micelle size, aggregation number, and micelle shape were determined. The ability of the aggregates as drug carrying nanodevices was also investigated by doping them with indomethacin. UV-Vis measurements showed that the solubility of indomethacine increased significantly. Our findings suggest that the solubility is largely dependent upon the block segment ratios.  相似文献   

18.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

19.
Summary: The complexation between polystyrene‐block‐poly(acrylic acid) (PS‐b‐PAA) micelles and poly(ethylene glycol)‐block‐poly(4‐vinyl pyridine) (PEG‐b‐P4VP) is studied, and a facile strategy is proposed to prepare core‐shell‐corona micellar complexes. Micellization of PS‐b‐PAA in ethanol forms spherical core‐shell micelles with PS block as core and PAA block as shell. When PEG‐b‐P4VP is added into the core‐shell micellar solution, the P4VP block is absorbed into the core‐shell micelles to form spherical core‐shell‐corona micellar complexes with the PS block as core, the combined PAA/P4VP blocks as shell and the PEG block as corona. A model is suggested to characterize the core‐shell‐corona micellar complexes.

Schematic formation of core‐shell‐corona (CSC) micellar complexes by adsorption of PEG‐b‐P4VP into core‐shell PS‐b‐PAA micelles.  相似文献   


20.
Well‐defined amphiphilic block copolymers, poly(styrene)‐b‐poly(N‐vinylimidazole) (PS‐b‐PVim), were successfully synthesized by macromolecular design via interchange of the xanthates/reversible addition–fragmentation chain transfer (RAFT) polymerization. The structure of the copolymer based on Vim can be well controlled, and the molecular weight distribution was relatively narrow (PDI = 1.24). The size and morphology of the aggregates of the amphiphilic copolymers were investigated by dynamic light scattering and transmission electron microscope, the results implied that the uniform spheroidal micelles consisting of PS core and PVim corona were assembled, and the catalytic activities of PS‐b‐PVim for the hydrolysis of p‐nitrophenyl acetate at different temperatures were also investigated by high‐performance liquid chromatograph (HPLC); the catalytic activities of diblock copolymers were prominently improved compared with that of PVim homopolymers. Moreover, the catalytic activities of the copolymers followed the Arrhenius behavior in the wide experimental temperature range. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号