首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The attempt to copolymerize ethylene and styrene using η3‐methallyl‐nickel‐diimine {[η3‐2‐MeC3H4]Ni[1,4‐bis(2,6‐diisopropylphenyl)C2H2N2][PF6]} ( 1 ) associated with MAO or TMA produces polystyrene, polyethylene and polyethylene with styrene end groups. Characteristics of the formed polymer depend on the reaction conditions. The presence of styrene in the medium reduces the polymerization productivity and the molecular weight of polyethylene. Incorporation of styrene into polyethylene is favored by a 1 /ethylene/MAO pre‐contact time and depends on the amount of styrene. Maximum incorporation was 4.4 wt.‐%. If styrene is introduced after the pre‐contact time, a bimodal product distribution is observed, suggesting the occurrence of two different catalytic species. If the co‐catalyst is changed from MAO to TMA, no copolymer is formed but the presence of styrene leads to higher amounts of branched polyethylene.  相似文献   

2.
Complexes of titanium(IV) with bulky phenolic ligands such as 2‐tert‐butyl‐4 methylphenol, 2, 4‐di‐tert‐butyl phenol and 3,5‐di‐tert‐butyl phenol were prepared and characterized. These catalyst precursors, formulated as [Ti(OPh*)n(OPri)4?n] (OPh* = substituted phenol), were found to be active in polymerization of ethylene at higher temperatures in combination with ethylaluminum sesquichloride (Et3Al2Cl3) as co‐catalyst. It was observed that the reaction temperature and ethylene pressure had a pronounced effect on polymerization and the molecular weight of polyethylene obtained. In addition, this catalytic system predominantly produced linear, crystalline ultra‐low‐molecular‐weight polyethylenes narrow dispersities. The polyethylene waxes obtained with this catalytic system exhibit unique properties that have potential applications in surface coating and adhesive formulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Polyethylene‐block‐poly(methyl methacrylate) (PE‐b‐PMMA) was successfully synthesized through the combination of metallocene catalysis with living radical polymerization. Terminally hydroxylated polyethylene, prepared by ethylene/allyl alcohol copolymerization with a specific zirconium metallocene/methylaluminoxane/triethylaluminum catalyst system, was treated with 2‐bromoisobutyryl bromide to produce terminally esterified polyethylene (PE‐Br). With the resulting PE‐Br as an initiator for transition‐metal‐mediated living radical polymerization, methyl methacrylate polymerization was subsequently performed with CuBr or RuCl2(PPh3)3 as a catalyst. Then, PE‐b‐PMMA block copolymers of different poly(methyl methacrylate) (PMMA) contents were prepared. Transmission electron microscopy of the obtained block copolymers revealed unique morphological features that depended on the content of the PMMA segment. The block copolymer possessing 75 wt % PMMA contained 50–100‐nm spherical polyethylene lamellae uniformly dispersed in the PMMA matrix. Moreover, the PE‐b‐PMMA block copolymers effectively compatibilized homopolyethylene and homo‐PMMA at a nanometer level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3965–3973, 2003  相似文献   

4.
Half titanocenes (CpCH2CH2O)TiCl2 (1), (CpCH2CH2OCH3)TiCl3 (2), and CpTiCl3 (3), activated by methylaluminoxane (MAO) were tested in copolymerization of ethylene with internal olefins such as cyclopentene. All the catalysts were able to give incorporation of cyclopentene in polyethylene matrix. 13C NMR analysis of obtained copolymers showed that the catalytic systems have low regiospecificity. In fact, in ethylene–cyclopentene copolymers, cyclic olefin inserts with both 1,2 and 1,3‐enchainment. X‐ray powder diffraction analysis of these copolymers confirmed that 1,2 inserted cyclopentene units are excluded from crystalline phase, whereas 1,3‐cyclopentene units are included, giving rise to expansion of unit cell of crystalline polyethylene. Titanium‐based catalysts were investigated also in the copolymerization of ethylene with E and Z‐2‐butene. Only complex (1) was able to give copolymers and 13C NMR analysis of products showed 2‐3, 1‐3, and 1‐2 insertion of 2‐butene. Differential scanning calorimetry analysis displayed that ethylene–cyclopentene, as well as ethylene‐2‐butene, copolymers are crystalline and their melting point decreases by increasing the comonomer content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4725–4733, 2008  相似文献   

5.
6.
In the presence of tetraethylaluminoxane (TEAO), iron complexes were used to catalyze ethylene polymerizations with extremely high activities and generally produced polyethylene with a bimodal molecular weight distribution (MWD). This bimodal MWD of polyethylene was mainly derived from residual triethylaluminum in TEAO and was produced through a mechanism of chain transfer to aluminum. Ethylaluminoxane and tetraisobutylaluminoxane also were used to polymerize ethylene with high activities in the presence of iron complexes, and only polyethylene with a unimodal MWD was produced. The ratio of the rate constant of chain transfer to aluminum (ktrA) to the rate constant of chain propagation (kp) was determined to be 0.12 for {[ArN?C(Me)]2C5H3N}FeCl2 when Ar was 2,6‐diisopropylphenyl ( 1 ) and 2.48 for {[ArN?C(Me)]2C5H3N}FeCl2 when Ar was 2,6‐dimethylphenyl ( 2 ); these values are far larger than those for metallocene‐based catalysts. This explains why an iron complex usually produces polyethylene with a broader MWD than metallocene‐based catalysts. Additionally, it can be concluded from the great difference between 1 and 2 with respect to ktrA/kp that an iron complex with less congested aryl substituents is subjected to chain transfer to aluminum. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1599–1606, 2005  相似文献   

7.
Data on ethylene polymerization over supported LFeCl2/MgCl2 catalysts {L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl]pyridyl} containing AlR3 (R = Me, Et, i‐Bu, or n‐Oct) as an activator are presented. These catalysts are highly active (100–300 kg of polyethylene/g of Fe h bar of C2H4) and stable in ethylene polymerization at 70–80 °C. Data on the effects of the iron content, AlR3 type, Al(i‐Bu)3 concentration, and hydrogen presence on the catalyst activity are presented. The molecular structure of polyethylene produced with these catalysts (including the molecular masses, molecular mass distribution, branching, and number of C?C bonds) has been studied; data on the effects of AlR3 and hydrogen on the molecular structure are presented. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2128–2133, 2005  相似文献   

8.
A series of para‐phenyl‐substituted α‐diimine nickel complexes, [(2,6‐R2‐4‐PhC6H2N═C(Me))2]NiBr2 (R = iPr ( 1 ); R = Et ( 2 ); R = Me ( 3 ); R = H ( 4 )), were synthesized and characterized. These complexes with systematically varied ligand sterics were used as precatalysts for ethylene polymerization in combination with methylaluminoxane. The results indicated the possibility of catalytic activity, molecular weight and polymer microstructure control through catalyst structures and polymerization temperature. Interestingly, it is possible to tune the catalytic activities ((0.30–2.56) × 106 g (mol Ni·h)?1), polymer molecular weights (Mn = (2.1–28.6) × 104 g mol?1) and branching densities (71–143/1000 C) over a very wide range. The polyethylene branching densities decreased with increasing bulkiness of ligand and decreasing polymerization temperature. Specifically, methyl‐substituted complex 3 showed high activities and produced highly branched amorphous polyethylene (up to 143 branches per 1000 C).  相似文献   

9.
Two novel nickel (II) complexes, CH{C(CF3)NAr}2NiBr ( 1 , Ar = 2,6‐iPr2C6H3 and 2 , 2,6‐Me2C6H3), were synthesized by the reaction of the lithium salt of fluorinated β‐diketiminate backbone ligands with (1,2‐dimethoxyethane) nickel (II) bromide [(DME)NiBr2]. The solid‐state structure of nickel (II) complex 2 as a dimer reveals four‐coordination and a tetrahedral geometry with bromide bridged by single crystal X‐ray measurement. Both complexes catalyze simultaneous polymerization and oligomerization of ethylene when activated by methylaluminoxane (MAO). It was found that the reaction temperature has a pronounced effect on the activity of ethylene polymerization and the molecular weight of obtained polyethylene. In addition, the nickel catalytic systems predominantly produce linear polyethylene with unsaturated end groups. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The Am(III) adsorption from very dilute aqueous solutions on polyethylene was studied as a function of the pH value, the composition of dissolved salts and the presence or absence of adsorbent SiO2. It was found that the Am(III) adsorption on polyethylene is decreased with increasing H+ concentration and dissolved salt concentrations and in the presence of SiO2 as an adsorbent. The mechanisms of Am(III) adsorption on polyethylene were discussed. Based on the observations in this paper, extreme care is necessary to minimize and correct the Am(III) adsorption on the container walls in order to improve the accuracy of Am(III) distribution coefficient (K d) between a solid and an aqueous solution.  相似文献   

11.
The NMR spin-spin relaxation (T2) spectra of high-density polyethylene (PE) has been investigated over a wide range of temperatures, both in the solid and molten states. Previous work in these laboratories has shown that the T2 relaxation spectrum of molten polyethylene differs from that of other polymers studied in that (a) it cannot be decomposed into two relaxation spectra (T2S and T2L) and (b) there is some evidence of a memory effect. This paper attempts to elucidate these observations, and compare them with the spin-spin relaxation of polyethylene at lower temperatures. In the solid state, the T2 decay comprises both a Gaussian distribution for the crystalline region, and an exponential decay for the amorphous component. The effects of crystallization conditions and of temperature were determined. In the molten state the T2 decay is more complex, but can be resolved into three exponentials. The longest (T2L) component arises as expected from the most mobile, low molecular weight fraction. The T2S component is due to an entangled but mobile network, as in other polymers. In addition, a short relaxation component T2X is observed, which is influenced by previous crystallinity and the processing history of the material, and is ascribed to some vestigial degree of structure in the molten phase.  相似文献   

12.
Polyethylene (PE)‐based 3‐ and 4‐miktoarm star [PE(PCL)2, PE(PCL)3] and H‐type [(PCL)2PE(PCL)2] block copolymers [polycaprolactone (PCL)] were synthesized by a combination of polyhomologation, chlorosilane chemistry, and ring opening polymerization (ROP). The following steps were used for the synthesis of the miktoarm stars: (a) reaction of a hydroxy‐terminated polyethylene (PE‐OH), prepared by polyhomologation of dimethylsulfoxonium methylide with a monofunctional boron initiator followed by oxidation/hydrolysis, with chloromethyl(methyl)dimethoxysilane or chloromethyltrimethoxysilane; (b) hydrolysis of the produced ω‐di(tri)methoxysilyl‐polyethylenes to afford ω‐dihydroxy‐polyethylene (difunctional initiator) and ω‐trihydroxy‐polyethylene (trifunctional initiator); and (c) ROP of ɛ‐caprolactone with the difunctional (3‐miktoarm star) or trifunctional macroinitiator (4‐miktoarm star), in the presence of 1‐tert‐butyl‐2,2,4,4,4‐pentakis(dimethylamino)‐2λ5,4λ5‐catenadi(phosphazene) (t‐BuP2). The H‐type block copolymers were synthesized using the same strategy, but with a difunctional polyhomologation initiator. All intermediates and final products were characterized by HT‐GPC, 1H NMR and FTIR analyses. Thermal properties of the PE precursors and all final products were investigated by DSC and TGA. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2129–2136  相似文献   

13.
The cyclohexyl‐substituted salicylaldiminato–Ni(II) complex [O? (3‐C6H11)(5‐CH3)C6H2CH?N‐2,6‐C6H3iPr2]Ni(PPh3)(Ph) ( 4 ) has been synthesized and characterized with 1H NMR and X‐ray structure analysis. In the presence of phosphine scavengers such as bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD)2], triisobutylaluminum (TIBA), and triethylaluminum (TEA), 4 is an active catalyst for ethylene polymerization and copolymerization with the polar monomers tert‐butyl‐10‐undecenoate, methyl‐10‐undecenoate, and 4‐penten‐1‐ol under mild conditions. The polymerization parameters affecting the catalytic activity and viscosity‐average molecular weight of polyethylene, such as the temperature, time, ethylene pressure, and catalyst concentration, are discussed. A polymerization activity of 3.62 × 105 g of PE (mol of Ni h)?1 and a weight‐average molecular weight of polyethylene of 5.73 × 104 g.mol?1 have been found for 10 μmol of 4 and a Ni(COD)2/ 4 ratio of 3 in a 30‐mL toluene solution at 45 °C and 12 × 105 Pa of ethylene for 20 min. The polydispersity index of the resulting polyethylene is about 2.04. After the addition of tetrahydrofuran and Et2O to the reaction system, 4 exhibits still high activity for ethylene polymerization. Methyl‐10‐undecenoate (0.65 mol %), 0.74 mol % tert‐butyl‐10‐undecenoate, and 0.98 mol % 4‐penten‐1‐ol have been incorporated into the polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6071–6080, 2004  相似文献   

14.
C1‐symmetric diastereoisomers of a zirconocene dichloride, SiMe2(3‐benzylindenyl)(indenyl)ZrCl2, known as catalyst precursors used to produce polypropylenes with similar molecular weights and tacticities, have been investigated in ethylene polymerization. Activated by methylaluminoxane, they produce microstructurally different polymers: high‐density polyethylene and linear low‐density polyethylene, the latter characterized by the presence of ethyl branches. The formation of branches is relevant in the complex having a sterically more crowded (inward) site. A comparison with the complex without substituents, meso‐SiMe2(indenyl)2ZrCl2, shows that the presence of a benzyl group on only one of the two indenyl moieties can regulate the number of branches and the molecular weight of the macromolecule. Actually, the unsubstituted complex is able to give double the number of branches and lower molecular weights, whereas the C1‐symmetric disubstituted complexes previously reported generally give linear polyethylene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3551–3555, 2006  相似文献   

15.
In this work, different types of polyethylene (linear, spiral nanofibers and microspheres) were obtained via confined polymerization by a PPM-supported Ziegler-Natta catalyst. Firstly, the Ziegler-Natta catalyst was chemical bonded inside the porous polymer microspheres (PPMs) supports with different pore diameter and supports size through chemical reaction. Then slightly and highly confined polymerization occurred in the PPM-supported Ziegler-Natta catalysts. SEM results illustrated that the slightly confined polymerization was easy to obtain linear and spiral nanofibers, and the nanofibers were observed in polyethylene catalyzed by PPMs-1#/cat and PPMs-2#/cat with low pore diameter (about 23 nm). Furthermore, the highly confined polymerization produced polyethylene microspheres, which obtained through other PPM-supported Ziegler-Natta catalysts with high pore diameter. In addition, high second melting point (Tm2: up to 143.3 °C) is a unique property of the polyethylene obtained by the PPM-supported Ziegler-Natta catalyst after removing the residue through physical treatment. The high Tm2 was ascribed to low surface free energy (σe), which was owing to the entanglement of polyethylene polymerized in the PPMs supports with interconnected multi-modal pore structure.  相似文献   

16.
Blends were made by solution and melt‐mixing fatty‐acid‐modified dendrimers with various polyolefins. Small‐angle neutron scattering (SANS) was used to determine the miscibility of the blends. Poly(propylene imine) (PPI) dendrimers G1, G3, and G5 [DAB‐dendr‐(NH2)y] with y = 4, 16, and 64, were reacted with stearic acid or stearic acid‐d35 forming amide bonds. The modified dendrimers were then blended with high‐density polyethylene (HDPE), high‐density polyethylene‐d4 (HDPE‐d4), low‐density polyethylene (LDPE), amorphous polypropylene (PP), or an ethylene–butylene copolymer (E‐co‐B). Limiting power law behavior shows that all of the blends are immiscible. It is likely that the dendrimers form a second phase, being finely dispersed, but thermodynamically immiscible. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 95–100, 2000  相似文献   

17.
Neutral binuclear ruthenium complexes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 of the general formula [{RuCl26p‐cym)}2 μ‐(NN)] (NN = bis(nicotinate)‐ and bis(isonicotinate)‐polyethylene glycol esters: (3‐py)COO(CH2CH2O)nCO(3‐py) and (4‐py)COO(CH2CH2O)nCO(4‐py), n =1–4), as well as mononuclear [RuCl26p‐cym)((3‐py)COO(CH2CH2OCH3)‐κN)], complex 9 , were synthesized and characterized using elemental analysis and electrospray ionization high‐resolution mass spectrometry, infrared, 1H NMR and 13C NMR spectroscopies. Stability of the binuclear complexes in the presence of dimethylsulfoxide was studied. Furthermore, formation of a cationic complex containing bridging pyridine‐based bidentate ligand was monitored using 1H NMR spectroscopy. Ligand precursors, polyethylene glycol esters of nicotinic ( L1 · 2HCl– L4 · 2HCl and L9 · HCl) and isonicotinic acid dihydrochlorides ( L5 · 2HCl– L8 · 2HCl), binuclear ruthenium(II) complexes 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 and mononuclear complex 9 were tested for in vitro cytotoxicity against 518A2 (melanoma), 8505C (anaplastic thyroid cancer), A253 (head and neck tumour), MCF‐7 (breast tumour) and SW480 (colon carcinoma) cell lines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Cycloocta[b ]pyridin‐10‐one was prepared to form the corresponding imino derivatives, which then reacted with (DME)NiBr2 to form 10‐aryliminocycloocta[b ]pyridylnickel bromides ( Ni1 – Ni5 ). The new compounds were characterized by means of FT‐IR spectroscopy as well as elemental analysis and the organic ligands were also analyzed by the NMR measurements. Furthermore, the molecular structure of a representative complex Ni3 was determined by the single crystal X‐ray diffraction, indicating the distorted tetrahedral geometry around the nickel atom. Upon the activation with either methylaluminoxane (MAO) or diethylaluminium chloride (Et2AlCl), the title nickel complexes exhibited high activity in ethylene polymerization and produced polyethylene of low molecular weight (1.43–6.78 kg mol?1) and low dispersity (1.7–2.4), which suggests a single‐site catalytic system. More importantly, the microstructure of the resultant polyethylene (especially degree of branching) and certain physical properties, such as T m values, can easily be modulated by selecting the proper substituents within the ligands and adjusting the polymerization conditions. This finding demonstrates that it is plausible to use a single catalyst for synthesizing different types of polyethylene on demand.10‐Aryliminocycloocta[b ]pyridylnickel bromides ( Ni1–Ni5 ), upon activation with either MAO or Et2AlCl, exhibited high activity towards ethylene polymerization and produced polyethylenes with low molecular weight (1.43–6.78 kg mol?1) and low dispersity (1.7–2.4). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2601–2610  相似文献   

19.
The characterisation of two cross-linked poly(acryloylmorpholines), Enzacry Gel K1 and Enzacryl Gel K2, as matrices for aqueous gel permeation chromatography is described. Near ideal plots of logarithm molecular weight versus distribution coefficient, Kd, are obtained for polyethylene glycols and linear, oligomeric α,ω-diols approximate molecular weight ( n) fractionation ranges being 0–4000 and 0–20,000 for Enzacryl Gel K1 and Enzacryl Gel K2, respectively. Anomalous retardation of the Schardinger dextrins, cyclomaltohexose and cyclomaltoheptose, is observed although linear maltosaccharides behave normally. The internal gel volumes, calculated from column elution data in water, are significantly larger than the volumes of solvent imbibed by the dry column packings on constituting the gel. Internal gel volumes and solvent imbibition volumes in water are compared with the corresponding values obtained in chloroform and tetrahydrofuran. The two parameters are discussed, in the case of Enzacryl Gel K2 in water and chloroform, in the light of plots of logarithm viscometric hydrodynamic volume versus Kd for polyethylene glycols.  相似文献   

20.
A new protocol has been developed for the synthesis of arylboronates by a coupling reaction of aryl halides and bis(pinacolato)diboron using bis(triphenylphosphine)palladium dichloride/sodium acetate/polyethylene glycol 600 [Pd(PPh3)2Cl2/NaOAc/PEG 600] as an efficient catalytic system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号