首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tetrahedron: Asymmetry》2001,12(11):1551-1558
We have determined the absolute configuration of the chiral sulfoxide 1-thiochroman S-oxide 1 using vibrational circular dichroism (VCD) spectroscopy. The VCD spectrum of a CCl4 solution of 1 was analyzed using density functional theory (DFT), which predicts three stable conformations of 1, separated by <1 kcal/mol. The VCD spectrum predicted using the DFT/GIAO methodology for the equilibrium mixture of the three conformations of (S)-1 is in excellent agreement with the experimental spectrum of (+)-1. The absolute configuration of 1 is therefore (R)-(−)/(S)-(+). (+)-1 and (−)-1 of high enantiomeric excess (e.e.) were synthesized in high yields via asymmetric oxidation of 1-thiochroman 2 using Ti(iso-PrO)4/(R,R)-1,2-diphenylethane-1,2-diol/H2O/tert-butyl hydroperoxide and Ti(iso-PrO)4/l-diethyl tartrate/H2O/cumene hydroperoxide, respectively.  相似文献   

2.
Mid-infrared vibrational unpolarised absorption and vibrational circular dichroism (VCD) spectra of CCl4 solutions of tert-butyl methyl sulfoxide (1) are reported. The spectra are compared to ab initio density functional theory (DFT) calculations carried out using two functionals, B3PW91 and B3LYP, and two basis sets, 6-31G* and TZ2P. The VCD spectra are calculated using Gauge-invariant atomic orbitals (GIAOs). The analysis of the VCD spectrum confirms the R(-)/S(+) absolute configuration of 1. The advantages and disadvantages of VCD spectroscopy in determining the absolute configurations of chiral sulfoxides are discussed.  相似文献   

3.
The enantiomers of 2-(2-chlorophenoxy) propanoic acid and 2-(3-chlorophenoxy) propanoic acid were resolved on a chiral HPLC column and investigated using mid-infrared vibrational circular dichroism (VCD). Experimental infrared vibrational absorption and VCD spectra were measured in CDCl3 solution in the 2000-900 cm-1 region and compared with the ab initio predictions of absorption and VCD spectra. The predicted spectra were obtained with density functional theory using B3LYP/6-31G* basis set for the stable and dominant conformers. But the predicted spectra did not provide unambiguous structural information due to intermolecular hydrogen bonding in solution. To eliminate the hydrogen bonding effects, the acids were converted to the corresponding methyl esters and the experimental absorbance and VCD spectra of methyl esters were measured. B3LYP predicted spectra were also obtained for the stable and dominant conformers of the esters. From a comparison of the experimental VCD spectra of methyl esters with corresponding ab initio predictions, the absolute configurations of esters, and therefore of their parent acids, are unambiguously determined to be (+)-(R).  相似文献   

4.
Experimental vibrational circular dichroism (VCD) spectra for the dextrorotatory enantiomer and theoretical VCD spectra obtained with localized molecular orbital theory using 6-31G* basis set for the (R) configuration of 2-methylthiirane-3,3-d(2) in the 700-1500 cm(-1) region are presented. The observed and predicted VCD signs are in very good agreement suggesting that the dextrorotatory enantiomer has the (R) configuration. This conclusion is also supported by the optical rotational data.  相似文献   

5.
[Structure: see text]. The absolute configurations of three compounds with a rigid 1,8-disubstituted as-hydrindacene skeleton have been determined using vibrational circular dichroism spectroscopy and quantum chemical calculations. Experimental spectra were compared to B3LYP/6-31G and B3LYP/cc-pVTZ level predicted spectra. Based on the agreement between the predicted and experimental spectra, the stereochemistry could be assigned with high confidence. The results were found to be in agreement with ECD determinations and/or predictions based on the applied asymmetric methods in the synthetic route.  相似文献   

6.
《Tetrahedron: Asymmetry》2001,12(18):2605-2611
A new oxathiane, derived from 5-hydroxy-1-tetralone has been synthesized in eight steps, fully characterized as cis-fused rings by 1D and 2D NMR and resolved by preparative chiral chromatography (CHIRALCEL OD-R). The second eluting (+, MeOH)-isomer was assigned (S,S)-configuration by VCD-ab initio simulation.  相似文献   

7.
The absolute configuration of rhizopine, an opine‐like natural product present in nitrogen‐fixing nodules of alfalfa infected by rhizobia, is elucidated using a combination of state‐of‐the‐art analytical and semi‐preparative supercritical fluid chromatography and vibrational circular dichroism spectroscopy. A synthetic peracetylated racemate was fractionated into its enantiomers and subjected to absolute configuration analysis revealing that natural rhizopine exists as a single enantiomer. The stereochemistry of non‐derivatized natural rhizopine corresponds to (1R,2S,3R,4R,5S,6R)‐4‐amino‐6‐methoxycyclohexane‐1,2,3,5‐tetraol.  相似文献   

8.
《Tetrahedron: Asymmetry》2005,16(15):2653-2663
The (+)-enantiomers of the o-Br, m-F and p-CH3 derivatives of trans phenyl glycidic acid have been obtained from the corresponding trans cinnamic acid derivatives using Oxone and the tri-keto bile acid dehydrocholic acid. Vibrational circular dichroism (VCD) spectroscopy of their methyl esters has been used to determine their absolute configurations. In each case, the absolute configurations of both methyl ester and parent acid were shown to be (2S,3R)-(+)/(2R,3S)-(−).  相似文献   

9.
In principle, the absolute configuration (AC) of a chiral molecule can be deduced from its optical rotation (OR) and/or its electronic circular dichroism (ECD). In practice, this requires reliable methodologies for predicting OR and ECD. The recent application of ab initio time-dependent density functional theory (TDDFT) to the calculation of transparent spectral region OR and ECD has greatly enhanced the reliability with which these phenomena can be predicted. TDDFT calculations of OR and ECD are being increasingly utilized in determining ACs. Nevertheless, such calculations are not perfect, and as a result, ACs determined are not 100% reliable. In this paper, we examine the reliability of the TDDFT methods in the case of chiral alkenes. Sodium d line specific rotations, [alpha]D, are predicted for 26 conformationally rigid alkenes of known AC, ranging in size from 5 to 20 C atoms, and with [alpha]D values in the range of 0-500. The mean absolute deviation of predicted [alpha]D values from experimental values is 28.7. With one exception, beta-pinene, the signs of [alpha]D are correctly predicted. Errors in calculated [alpha]D values are approximately random. Our results define a "zone of indeterminacy" within which calculated [alpha]D values cannot be used to determine ACs with >95% confidence. TDDFT ECD spectra are predicted for eight of the alkenes and compared to experimental spectra. Agreement ranges from modestly good to poor, leading to the conclusion that TDDFT calculations of ECD spectra are not yet of sufficient accuracy to routinely provide highly reliable ACs. TDDFT OR calculations for two conformationally flexible alkenes, 3-tert-butylcyclohexene and trans-4-carene, are also reported. For the former, predicted rotations are incorrect in sign over the range 589-365 nm. It is possible that the AC of this molecule has been incorrectly assigned.  相似文献   

10.
11.
The absolute configuration of(+)-(1,5)-diamino-triptycene has been determined by calculation of the CD spectrum of the molecule and comparison with the experimental results of Tanaka et al.4 To achieve this the exciton theory of Weigang and Nugent3 has been extended to include terms representing the retardation of the electro-magnetic wave in the chromophores. The final results of the present study are in contradiction with those of Tanaka et al.4a,b,c  相似文献   

12.
The Absolute configuration (AC) of the chiral alkane D3-anti-trans-anti-trans-anti-trans-perhydrotriphenylene (PHTP), 1, is determined by comparison of density functional theory (DFT) calculations of its vibrational circular dichroism (VCD) and optical rotation (OR) to the experimental VCD and OR of (+)−1, obtained in high enantiomeric excess using chiral gas chromatography. Conformational analysis of 1 demonstrates that the all-chair (CCCC) conformation is the lowest in energy and that other conformations are too high in energy to be significantly populated at room temperature. The B3PW91/TZ2P calculated IR spectrum of the CCCC conformation of 1 is in excellent agreement with the experimental IR spectrum, confirming the conformational analysis and demonstrating the excellent accuracy of the B3PW91 functional and the TZ2P basis set. The B3PW91/TZ2P calculated VCD spectrum of the CCCC conformation of S-1 is in excellent agreement with the experimental VCD spectrum of (+)−1, unambiguously defining the AC of 1 to be S(+)/R(−). The B3LYP/aug-cc-pVDZ calculated OR of S-1 over the range 589–365 nm has the same sign and dispersion as the experimental OR of (+)−1, further supporting the AC S(+)/R(−). Our results confirm the AC proposed earlier by Farina and Audisio. This study provides a further demonstration of the excellent accuracy of VCD spectra predicted using Stephens’ equation for vibrational rotational strengths together with the ab initio DFT methodology, and further documents the utility of VCD spectroscopy in determining the ACs of chiral molecules.  相似文献   

13.
Comparison of theoretical and experimental vibrational circular dichroism (VCD) spectra of an enantiopure synthetic sample of the obscure mealybug sex pheromone allowed the determination of the absolute configuration of the insect's pheromone.  相似文献   

14.
The determination of the absolute configuration of chiral molecules is an important aspect of molecular stereochemistry. Vibrational circular dichroism (VCD) is the extension of electronic CD into the infrared region where fundamental vibrational transitions occur. VCD has a number of advantages over all previous methods of absolute configuration assignment. The absolute configuration and predominant solution-state conformation in CDCl(3) of the chiral lactone, 5-formyl-cis,cis-1,3,5-trimethyl-3-hydroxymethylcyclohexane-1-carboxylic acid lactone, 1, obtained by the comparison of measured and calculated VCD spectra, are reported. It is found that (-)-1 corresponds to the absolute configuration (1S,3S,5R)-1.  相似文献   

15.
The enantiomers of tert-butyl-1-(2-methylnaphthyl)phosphine oxide 1 have been separated using a homemade HPLC column and an analytical gradient system. Vibrational absorption and circular dichroism spectra for both enantiomers have been measured in CD2Cl2 and CH2Cl2 solutions in the 2000-900 cm(-1) region. The fully relaxed potential energy surface of (S)-tert-butyl-1-(2-methylnaphthyl)phosphine oxide, obtained using the B3LYP functional with a 6-31G basis set, indicated two stable conformers with their populations in a approximately 2:1 ratio. The vibrational absorption and VCD spectra are predicted for these two conformers using the B3LYP functional with a 6-31G basis set. The comparison of predicted and experimental spectra indicated that (+)-tert-butyl-1-(2-methylnaphthyl)phosphine oxide is in the (S)-configuration. This assignment is supported by the ab initio prediction of positive optical rotation for the most stable conformer with an (S)-configuration and the nonequivalence sense of the tert-butyl group chemical shift observed in the 1H NMR spectrum of this enantiomer measured in the presence of (+)-(S)-mandelic acid as a chiral solvating agent.  相似文献   

16.
The chiral oxadiazol-3-one 2 has recently been shown to exhibit myocardial calcium entry channel blocking activity, substantially higher than that of diltiazem. To determine the enantioselectivity of this activity, the enantiomers of 2 have been resolved using chiral chromatography. The absolute configuration (AC) of 2 has been determined by comparison of density functional theory (DFT) calculations of its vibrational circular dichroism (VCD) spectrum, electronic circular dichroism (ECD) spectrum, and optical rotation (OR) to experimental VCD, ECD, and OR data. All three chiroptical properties yield identical ACs; the AC of 2 is unambiguously determined to be S(+)/R(-).  相似文献   

17.
The stereochemistry of products obtained via a chemical reaction may not always be obvious from the reaction scheme utilized. The identification of convenient methods to determine the stereochemistry in such cases is highly desirable. To identify these methods, we considered a substituted 4-vinyl-1-azabicyclo[3.2.0]hept-3-en-7-one that undergoes spontaneous oxidation in the atmosphere at room temperature, yielding an epoxide with unknown absolute configuration. To determine the absolute configuration of the resulting epoxide, three different approaches have been utilized: (a) experimental NOE measurements; (b) experimental electronic circular dichroism (ECD) spectroscopic measurements and their analysis using corresponding quantum chemical predictions at the B3LYP/aug-cc-pVDZ level; (c) experimental vibrational circular dichroism (VCD) spectroscopic measurements and their analysis using corresponding quantum chemical predictions at the B3LYP/aug-cc-pVDZ level. It was found that the NOE data could not provide enough proof for assigning the absolute configuration, while ECD data could not provide enough discrimination to distinguish between the two possible stereoisomers. On the other hand, VCD spectroscopic analysis provided enough discrimination to distinguish between the two possible stereoisomers, and the absolute configuration could be assigned with confidence.  相似文献   

18.
The odd-even effect of chiral alkyl alcohols, (S)-CH(3)CHOHC(n)()H(2)(n)()(+1) (n = 2-8), in solution state has been observed spectroscopically for the first time. The vibrational circular dichroism (VCD) bands at 1148 cm(-)(1) exhibit a clear odd-even effect. The observed VCD bands of (R)-(-)-2-hexanol correspond well to those predicted (population weighted). Density functional theory calculations indicate that the most prevalent conformations in solution are the all-trans forms. The odd-even effect of the VCD bands is ascribed to the alternating terminal methyl motions in the alkyl chains relative to fixed motions near the chiral center in the trans conformations. The conformational sensitivity of VCD for the chiral alcohols in the solution state may be useful for the design of liquid crystals and ligands in the future.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号