首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.  相似文献   

2.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Cd(II), Hg(II), and VO(IV) have been designed and synthesized from the Schiff base derived from cinnamidene-4-aminoantipyrine and 2-aminophenol by involving the carbonyl group of 4-aminoantipyrine. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conduction, FAB mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of the ML2 type. The UV-Vis, magnetic susceptibility, and ESR spectral data of the complexes suggest an octahedral geometry around the central metal ion except the VO(IV) complex, which has a square-pyramidal geometry. The redox behavior of the copper and vanadyl complexes has been studied by cyclic voltammetry. The antimicrobial activity of the ligand and its complexes has been extensively studied on microorganisms such as Salmonella typhi, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Aspergillus niger, and Rhizoctonia bataicola. It has been found that most of the complexes have higher activities than that of the free ligand. The nuclease activity of the above metal complexes shows that the complexes cleave DNA through redox chemistry. In the presence of H2O2, the complexes are capable of cleaving calf thymus DNA. The text was submitted by the authors in English.  相似文献   

3.
A new series of transition metal complexes of Cu(II), Ni(II), Zn(II) and VO(IV), were synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and acetylacetone. The structural features were arrived from their elemental analyses, magnetic susceptibility, molar conductance, Mass, IR, UV-Vis., 1H NMR and ESR spectral studies. The data show that the complexes have composition of [ML]X type. The UV-Vis., magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except for VO(IV) complex which has square-pyramidal geometry. The redox behavior of copper and vanadyl complexes were studied by cyclic voltammetry. The antimicrobial screening tests were also recorded and gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that the copper and nickel complexes cleave DNA through redox chemistry, whereas other complexes are not effective.  相似文献   

4.
Co(II), Ni(II), and Cu(II) complexes, ML2 · 2H2O have been synthesized with Schiff bases derived from m-substituted thiosemicarbazides and 2-methoxy benzaldehyde. The complexes are soluble in DMF/DMSO and non-electrolytes. From analytical, spectral (IR, UV-Vis, ESR, and FAB-mass), magnetic and thermal studies octahedral geometry is proposed for the complexes. The redox behavior of the complexes was investigated using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by Minimum Inhibitory Concentration method. DNA cleavage is studied by agarose gel electrophoresis method.  相似文献   

5.
A novel Schiff base has been designed and synthesized using the bioactive ligand obtained from 4-aminoantipyrine, 3,4-dimethoxybenzaldehyde and 2-aminobenzoic acid. Its Cu(II), Co(II), Ni(II), Zn(II) complexes have also been synthesized in ethanol medium. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV–Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with calf thymus (CT) DNA has been studied using absorption spectra, cyclic voltammetric, and viscosity measurement. The metal complexes have been found to promote cleavage of pUC19 DNA from the super coiled form I to the open circular form II. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.  相似文献   

6.
A series of Co(II), Ni(II) and Cu(II) complexes, [ML?·?2H2O] of Schiff bases derived from 4,4-diaminodiphenyl sulfone (dapsone) and 8-formyl-7-hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin have been synthesized. From analytical, spectral (IR, NMR, UV-Vis, ESR and FAB mass), and magnetic studies it has been concluded that the metal complexes possess octahedral geometry and are non-electrolytes. The redox behavior of the metal complexes is investigated by cyclic voltammetry. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella, Salmonella, Streptococcus, Staphylococcus proteus) and antifungal activities (Fusarium, Candida, Rhizopus, Penicillium chrysogenum and Aspergillus niger) by the minimum inhibitory concentration method. The anthelmintic activity of the ligands and their metal complexes against earthworms was investigated. The DNA cleavage study was done by agarose gel electrophoresis. Anti-inflammatory activity studies showed the test compounds are comparable to the standard drug diclofenac sodium.  相似文献   

7.
A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 8-formyl-7-hydroxy-4-methyl coumarin and o-chloroaniline/o-toluidine. The structures of the complexes have been proposed from analytical, spectral (IR, UV-Vis, ESR and FAB-mass), magnetic, thermal and fluorescence studies. The complexes are soluble in DMF and DMSO and molar conductance values indicate the complexes are non-electrolytes. Elemental analyses indicate ML2 · 2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry. Spectroscopic studies (IR, UV-Vis, ESR and fluorescence) indicate octahedral geometry, in which ligand coordinates through azomethine nitrogen and phenolic oxygen via deprotonation. Thermal studies suggest coordination of water to the metal ion. Redox behavior of the complexes was investigated by cyclic voltammetry. The Schiff bases and their complexes were screened for their antibacterial (E. coli, S. aureus, P. aeruginosa and S. typhi) and antifungal activities (A. niger, A. flavus and Cladosporium) by MIC method.  相似文献   

8.
Neutral complexes of Co(II), Ni(II), Cu(II), and Zn(II) have been synthesized from the Schiff bases derived from 3-nitrobenzylidene-4-aminoantipyrine and aniline (L1)/p-nitro aniline (L2)/p-methoxy aniline (L3) in the molar ratio 1 : 1. The structural features have been determined from microanalytical, IR, UV-Vis, 1H-NMR, mass, and ESR spectral data. The Cu(II) complexes are square planar, while Co(II), Ni(II), and Zn(II) complexes are tetrahedral. Magnetic susceptibility measurements and molar conductance data provide evidence for the monomeric and neutral nature of the complexes. The X-band ESR spectrum of Cu(II) complexes at 300 and 77 K were recorded. The electrochemical behavior of the complexes in MeCN at 298 K was studied. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola, and Candida albicans by the well-diffusion method. Comparison of the inhibition values of the Schiff bases and their complexes indicate that the complexes exhibit higher antimicrobial activity.  相似文献   

9.
A series of Co(II), Ni(II), and Cu(II) complexes ML?·?3H2O have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and 5-formyl-6-hydroxy coumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that the complexes are non-electrolytes. In view of analytical, spectral (infrared, UV-Vis, ESR, TG, and FAB-mass), and magnetic studies, it has been concluded that all the metal complexes possess octahedral geometry in which ligand is coordinated to metal through azomethine nitrogen, phenolic oxygen, and sulfur via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the minimum inhibitory concentration method. DNA cleavage is studied by agarose gel electrophoresis.  相似文献   

10.
Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) have been synthesised using a Schiff base formed by the condensation of o-phenylenediamine with acetoacetanilide in alcohol medium. All the complexes were characterised on the basis of their microanalytical data, molar conductance, magnetic susceptibility, IR, UV-Vis1H NMR and ESR spectra. IR and UV-Vis spectral data suggest that all the complexes are square-planar except the Mn(II) and VO(II) chelates, which are of octahedral and square pyramidal geometry respectively. The monomeric and neutral nature of the complexes was confirmed by their magnetic susceptibility data and low conductance values. The ESR spectra of copper and vanadyl complexes in DMSO solution at 300 K and 77 K were recorded and their salient features are reported.  相似文献   

11.
End-off compartmental pentadentate Schiff base, 2,6-bis[3′-methyl-2′-carboxamidyliminomethyl(6′,7′)benzindole]-4-methylphenol is synthesized and characterized by 2D NMR experiments and mass spectral techniques. The homodinuclear phenalato bridged end-off compartmental Schiff-base complexes Cu(II), Co(II), Ni(II), Mn(II), Fe(III), VO(IV), Zn(II), Cd(II) and Hg(II) have been prepared by the template method using the precursors 2,6-diformyl-4-methylphenol, 3-methyl(6′,7′)-2-benzindolehydrazide and metal chlorides in 1?:?2?:?2 ratio. The complexes are characterized by IR, NMR, UV-vis, FAB-mass, ESR and TGA techniques. Ni(II), Mn(II) and Fe(III) complexes have octahedral geometry, whereas the Cu(II), Co(II), VO(IV), Zn(II), Cd(II) and Hg(II) complexes have square pyramidal geometry. Low magnetic moment values for Cu(II), Co(II), Ni(II), Mn(II), Fe(III) and VO(IV) complexes indicate antiferromagnetic spin-exchange interaction between two metal centers. The metal complexes have been screened for their antibacterial activity against Escherichia coli and Staphyloccocus aureus and antifungal activity against Aspergillus niger and Fusarium oxysporum.  相似文献   

12.
New complexes of Co(II), Ni(II), Cu(II), and Zn(II) with new Schiff bases derived by the condensation of p-aminoacetophenoneoxime with 5-methoxysalicylaldehyde are synthesized. The compounds are characterized by elemental analyses, magnetic susceptibility measurements, IR, 1H and 13C NMR spectra, electronic spectral data, and molar conductivity. The thermal stabilities of the compounds are also reported. The Schiff base acts as bidentate O,N-donor atoms, and their metal complexes are supposed to possess a tetrahedral geometry with respect to the central metal ion. The general formula of the 5-methoxysalicyliden-p-aminoacetophenoneoxime Co(II), Ni(II), Cu(II), and Zn(II) complexes is Co(L)2, Ni(L)2, Cu(L)2, and Zn(L)2.  相似文献   

13.
Two novel Schiff bases, 4,4′-methylenedianilidene-bis(3-methoxy-4-hydroxy-benzaldehyde) (L1) and 4,4′-methylenedianilidene-bis(3,4-dimethoxybenzaldehyde) (L2), have been prepared by condensing 4,4′-methylenedianiline (MDA) with vanillin and 3,4-dimethoxybenzaldehyde (DMB) respectively in ethanolic medium. Metal complexes of the above Schiff bases are prepared from salts of Cu(II), Zn(II), Co(II) and VO(IV). They are characterized by elemental analysis, molar conductivity, magnetic moment measurements, IR, 1H NMR, UV-Vis., FAB Mass, and EPR spectra. The elemental analysis data exhibit the formation of 1: 1 [M: L] ratio. The mode of bonding and the geometry of the complexes have been confirmed on the basis of IR, UV-Vis. and magnetic moment measurements. These data reveal a square-planar geometry for all the complexes except VO(IV) which has square-pyramidal geometry. The molar conductance measurements of the Schiff base complexes reveal the existence of non-electrolytic nature. The interactions of complexes with calf thymus DNA (CT-DNA) have been investigated by electronic absorption spectroscopy, viscosity measurements and cyclic voltammetry. The results indicate that the complex can bind to DNA by intercalation modes. The Schiff bases and their metal complexes have been evaluated for their antifungal and antibacterial activities against different species of pathogenic fungi and bacteria and their results are compared with standard drugs.  相似文献   

14.
The metal complexes of Zn(II), Ni(II), Cu(II) and Pb(II) with asymmetrical Schiff bases were synthesized. The asymmetrical Schiff base was obtained through the condensation of 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde and biphenyl-4-carbaldehyde. The new Schiff base ligands (L1' and L2') and their metal complexes were characterized by TG/DTG, FT-IR, 1H-NMR, UV–Vis, ESR, powder XRD, elemental analysis, magnetic moment and fluorescence studies. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, while Ni(II) and Zn(II) complexes are crystalline. The anticarcinogenic effects of L1' and L2' were also investigated against colon (SW-620) and cervical cancer (HeLa) cell lines and compound L2' was found to possess the highest anticarcinogenic potential, with 16.7 µM and 27.5 µM of IC50 values for HeLa and SW620 cells, respectively.  相似文献   

15.
Co(II), Ni(II), Cu(II), and Zn(II) complexes have been prepared with Schiff bases derived from 3-formyl-2-mercaptoquinoline and substituted anilines. The prepared Schiff bases and chelates have been characterized by elemental analysis, molar conductance, magnetic susceptibilities, electronic, IR, 1H-NMR, ESR, cyclic voltammetry, FAB-mass, and thermal studies. The complexes have stoichiometry of the type ML2 · 2H2O coordinating through azomethine nitrogen and thiolate sulfur of 2-mercapto quinoline. An enhancement in fluorescence has been noticed in the Zn(II) complexes whereas quenching occurred in the other complexes. The ligands and their metal complexes have been screened in vitro for antibacterial and antifungal activities by MIC methods with biological activity increasing on complexation. Cu(II) complexes show greater bacterial than fungicidal activities. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of the ligands and their corresponding complexes. Only four compounds have exhibited potent cytotoxic activity against Artemia salina; the other compounds were almost inactive for this assay.  相似文献   

16.
Three novel oxovanadium(IV) Schiff base complexes [VO(Phen)(L)]SO4, where L = 4[(benzylidene)amino]antipyrine (Ia), 4[(cinnamalidene)amino]antipyrine (Ib) and 4[(2-chlorobenzylidene)amino]antipyrine (Ic) are designed using benzaldehyde/cinnamaldehyde/2-chlorobenzaldehyde with 4-aminoantipyrine, 1,10-phenonthroline, and vanadyl sulfate in the 1: 1: 1 molar ratio. They are synthesized by the template method. The geometry of the complexes is elucidated by elemental analyses, IR, UV-Vis, ESR, CV, FAB mass, magnetic susceptibility, and conductance data. FAB mass spectrum shows the degradation of the complexes. The electronic spectra of the complexes reveal their square pyramidal geometry in which the ligands act as tetradentate. Their electrochemical parameters, the anodic and cathodic potentials, and the number of electrons transferred are calculated. One quasi-reversible peak and one electron-transfer redox processes corresponding to the formation of a VO(II)/VO(III) couple are observed. The antimicrobial activity of synthesized complexes are tested. The results are compared with the standard penicillin. DNA cleavage experiments showed that Ia exhibits higher cleavage efficiency, whereas Ib and Ic have the lower cleavage efficiency. The text was submitted by the authors in English.  相似文献   

17.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

18.
A series of new Co(II), Ni(II), and Cu(II) complexes of Schiff base derived from coumarin have been prepared and characterized by analytical and spectral methods. The Schiff base is synthesized by the condensation of 2,6-diaminopyridine and 3-acetylcoumarin in 1 : 1 stoichiometric ratio. All complexes have 1 : 1 metal : ligand ratio except the nickel complex, where it was found to be 1 : 2. UV-Vis spectra and magnetic moment studies confirm the existence of tetrahedral and octahedral geometries around cobalt(II) and nickel(II) metal ions, respectively, but copper(II) chloride/nitrate/sulfate complexes have square-planar geometry and copper(II) acetate complex is distorted octahedral. ESR spectra of copper complexes at room temperature and liquid nitrogen temperature were tetragonal. All the complexes were found to be more active against bacteria except Ni(II) complex; only CuLSO4 and CuL(CH3COO)2 have shown the enhanced activity against fungi.  相似文献   

19.
A series of metal(II) complexes ML and ML2 [where M?=?Cu(II), Co(II), Ni(II), Zn(II), Mn(II), Cd(II), and VO(II); L?=?2-hydroxyphenyl-3-(1H-indol-3-yl)-prop-2-en-1-one (HPIP)] have been prepared and characterized by elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, NMR, Mass, and ESR spectral studies. Conductivity measurements reveal that the complexes are non-electrolytes, except VO(II) complex. Spectroscopy and other data show square pyramidal geometry for oxovanadium and octahedral geometry for the other complexes. Redox behavior of the copper(II) and vanadyl complexes has been studied with cyclic voltammetry. Antimicrobial activities against several microorganisms indicate that a few complexes exhibit considerable activity. The nuclease activity shows that the complexes cleave DNA. All synthesized compounds can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation efficiency of the ligand is higher than that of urea and KDP.  相似文献   

20.
The kinetics of reduction of the azomethine bond in various Schiff bases and their transition metal complexes with sodium borohydride in dimethylformamide and ethanol solutions was studied. The reduction rate depends on both the structure of the starting Schiff bases and the nature of the metal ion. In transition metal N-phenylsalicylaldiminates, the rate of reduction of the azomethine group increases in the order Zn(II) < Ni(II) < Cu(II) < Co(II) < VO(II) < Mn(II). Similar trend is observed in other series of metal complexes with Schiff bases. The revealed trends are opposite to the Irving-Williams series of stability of complexes. This fact suggests that the major factor affecting the rate of reduction of the coordinated azomethine bond is the strength of its bonding with the metal ion. Depending on particular metal ion, the complexation can either decelerate or accelerate the reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号