首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Copper films were coated on beech wood substrates by electroless plating method. The influence of bath temperature on the copper films properties was studied by varying the bath temperatures 25, 35, 45 and 55 °C. Scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X‐ray diffraction (XRD) pattern, X‐ray photoelectron spectroscopy (XPS), micro Raman spectroscopy and contact angle measurements were used to both characterize the physical and chemical copper films properties and understand the influence of bath temperature on the wettability of copper surface. In our studies, we have found that the gained copper mass significantly increased at 55 °C. The crystalline nature of the coated copper was confirmed by XRD. The presence of Cu2O and CuO was observed by XPS and micro Raman techniques, which confirms the oxidization of the coated copper surface. Also these characterization techniques have shown the big influence of bath temperature on the morphology, grain size, chemical composition and the film thickness of the coated copper. The wettability was highly influenced by increasing CuO on the coated copper, which is increased by the bath temperature. The contact angle measurements have demonstrated the influence of C―O, O―C?O and CuO components of the surface on the wettability of the samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, the influence of different ionic composition in aqueous solution on the minerals surface wettability was studied. The differences effect of monovalent ion and divalent ions onto the wettability alteration were studied. The anions were Cl- and SO42-. The SO42- could make the minerals surface more hydrophilic. Besides, the influence of NaCl, MgCl2, CaCl2, Na2SO4, K2SO4 and MgSO4 on the mineral wettability alteration were studied. The results indicated that divalent ions showed significant impact on the minerals wettability alteration, compared with monovalent ion. The reasons were due to the fact that divalent ions showed higher ions adsorption than monovalent ion, and divalent ions have higher effect on compressing the electric double layer. The static contact angle and dynamic contact angle were measured. Different heavy oils were studied, including heavy oil with 100 ppm, heavy oil, heavy oil without resins, heavy oil without asphaltenes. The results showed that the asphaltenes would make it difficult for the heavy oils to liberate from minerals, thus decreasing the oil drops contact angle. Then the resins would decrease the heavy oil contact angles. CaCl2/MgCl2 and K2SO4 have synergistic effect on the change of the minerals surface wettability. Atomic force microscope (AFM) measurement indicated that the ions would effectively decrease the interaction force on the surface of heavy oil-minerals, which was beneficial to the heavy oil liberation. The roughness measurement indicated that the different ions would effectively increase the minerals surface wettability.  相似文献   

3.
The hydrodynamic drainage force of a Newtonian aqueous electrolyte solution squeezed between two surfaces of different wettability was measured using the AFM colloidal probe technique. The surface hydrophobicity, roughness, polarity and approach velocity, and thus the shearing rate of the liquid, were controlled. A direct relationship between the mobility of the aqueous electrolyte solution close to the surfaces and the hydrophobicity of the surfaces was not established. We predict that the mobility of the liquid depends in a more complex fashion on the polarity and charge of the surfaces and on the properties of the electrolyte.  相似文献   

4.
Besides significantly broadening the scope of available data on adhesion of proteins on solid substrates, we demonstrate for the first time that all seven proteins (tested here) behave similarly with respect to adhesion exhibiting a step increase in adhesion as wettability of the solid substrate decreases. Also, quantitative measures of like-protein-protein and like-self-assembled-monolayer (SAM)-SAM adhesive energies are provided. New correlations, not previously reported, suggest that the helix and random content (as measures of secondary structure) normalized by the molecular weight of a protein are significant for predicting protein adhesion and are likely related to protein stability at interfaces. Atomic force microscopy (AFM) was used to directly measure the normalized adhesion or pull-off forces between a set of seven globular proteins and a series of eight well-defined model surfaces (SAMs), between like-SAM-immobilized surfaces and between like-protein-immobilized surfaces in phosphate buffer solution (pH 7.4). Normalized force-distance curves between SAMs (alkanethiolates deposited on gold terminated with functional uncharged groups -CH3, -OPh, -CF3, -CN, -OCH3, -OH, -CONH2, and -EG3OH) covalently attached to an AFM cantilever tip modified with a sphere and covalently immobilized proteins (ribonuclease A, lysozyme, bovine serum albumin, immunoglobulin, gamma-globulins, pyruvate kinase, and fibrinogen) clearly illustrate the differences in adhesion between these surfaces and proteins. The adhesion of proteins with uncharged SAMs showed a general "step" dependence on the wettability of the surface as determined by the water contact angle under cyclooctane (thetaco). Thus, for SAMs with thetaco < approximately 66 degrees, (-OH, -CONH2, and -EG3OH), weak adhesion was observed (>-4 +/- 1 mN/m), while for approximately 66 < thetaco < approximately 104 degrees, (-CH3, -OPh, -CF3, -CN, -OCH3), strong adhesion was observed (< or =8 +/- 3 mN/m) that increases (more negative) with the molecular weight of the protein. Large proteins (170-340 kDa), in contrast to small proteins (14 kDa), exhibit characteristic stepwise decompression curves extending to large separation distances (hundreds of nanometers). With respect to like-SAM surfaces, there exists a very strong adhesive (attractive) interaction between the apolar SAM surfaces and weak interactive energy between the polar SAM surfaces. Because the polar surfaces can form hydrogen bonds with water molecules and the apolar surfaces cannot, these measurements provide a quantitative measure of the so-called mean hydrophobic interaction (approximately -206 +/- 8 mN/m) in phosphate-buffered saline at 296 +/- 1 K. Regarding protein-protein interactions, small globular proteins (lysozyme and ribonuclease A) have the least self-adhesion force, indicating robust conformation of the proteins on the surface. Intermediate to large proteins (BSA and pyruvate kinase-tetramer) show measurable adhesion and suggest unfolding (mechanical denaturation) during retraction of the protein-covered substrate from the protein-covered AFM tip. Fibrinogen shows the greatest adhesion of 20.4 +/- 2 mN/m. Unexpectedly, immunoglobulin G (IgG) and gamma-globulins exhibited very little adhesion for intermediate size proteins. However, using a new composite index, n (the product of the percent helix plus random content times relative molecular weight as a fraction of the largest protein in the set, Fib), to correlate the normalized adhesion force, IgG and gamma-globulins do not behave abnormally as a result of their relatively low helix and random (or high sheet) content.  相似文献   

5.
A series of two-level hierarchical structures on polystyrene (PS) and poly(methyl methacrylate) (PMMA) were fabricated using sequential nanoimprinting lithography (NIL). The hierarchical structures consist of micrometer and sub-micrometer scale grating imprinted with varying orientations. Through water contact angle measurements, these surface hierarchical structures showed a wide range of anisotropic wettabilities on PMMA and PS, with PMMA having an anisotropic wettability from 6 degrees to 54 degrees and PS having an anisotropic wettability from 8 degrees to 32 degrees. At the same time, the water contact angle of PMMA and PS can be tuned to nearly 120 degrees without modifying the surface chemistry. A tunable anisotropic wettability is beneficial for applications where controlling the direction of liquid flow is important, such as in microfluidic devices.  相似文献   

6.
采用一步电沉积的方法在导电玻璃基底上制备了具有粗糙表面的氧 化锌薄膜.用SEM和XPS表征了薄膜的表面形貌和化学组成,用接触角测定仪 测定接触角以评估薄膜的浸润性.结果显示,薄膜表面布满了无序生长的花瓣状 的微晶,形成疏松的结构.薄膜与水的接触角为133.2°,呈现了疏水的性质.通 过紫外光照射的方法可以使其由疏水性薄膜转化为亲水性薄膜,接触角降低到 4.8°。  相似文献   

7.
Physical and chemical modifications were made on the surface of the aluminum sheet to change the surface properties and superhydrophobic–hydrophilic wettability gradient surface was made on the perspex surface by using microstructure-pattering technique and self-assembled-monolayer method. By using high-speed video camera system and optical tensiometer, this paper discusses the influence of special surfaces with different wettability on spreading and motion of water, oil, and W/O emulsion droplets both experimentally and theoretically. In addition, the paper also discusses the influence of the superhydrophobic–hydrophilic wettability gradient on fluidity of W/O emulsion droplets and the coalescence process of droplets. The results showed that the contact angle of W/O emulsion droplets on the modified surfaces was related to the water and oil distribution at the three-phase line. On the wettability gradient surface, the droplet moved spontaneously when the droplet was located at the junction of the gradient. A quasi-steady theoretical model was used to analyze the driving and resistant forces acting on a droplet to improve the understanding of the self-transport behavior of the droplets.  相似文献   

8.
Summary A method for determining boiling points on theKofler stage is described. The sample is sealed in a glass capillary with a drop of mercury and observed under the microscope during the heating operation. Boiling ranges may be obtained on complex materials.
Zusammenfassung Ein Verfahren zur Bestimmung des Siedepunktes mit einigen Mikrogrammen von Flüssigkeit wird beschrieben. Das Tröpfchen wird mit Hilfe eines Tropfens Quecksilber in einer Glaskapillare eingeschlossen, wie es aus Abb. 1 ersichtlich ist, und während des Erhitzens amKofler-Heiztisch unter dem Mikroskop beobachtet. Reine Substanzen verdampfen innerhalb eines engen Temperaturbereiches. Mit etwa zehnmal größeren Materialmengen ist es möglich, den Siedebereich von komplizierten Mischungen zu studieren.

Résumé On décrit un procédé pour la détermination du point d'ébullition avec quelques microgrammes de liquide. La gouttelette est enfermée au moyen d'une goutte de mercure dans un tube capillaire et observée pendant le chauffage, sous le microscope, à la table chauffante deKofler. Les substances pures s'évaporent dans l'intérieur d'un domaine étroit de température. Il est possible d'étudier le domaine d'ébullition de mélanges compliqués avec des quantités de matière environ 10 fois plus grandes.


With 2 Figures.  相似文献   

9.
The polymerization conditions have a strong influence on the properties and time-dependent behavior of a sessile water drop on polymer films. For a given copolymer composition, the recipe components of emulsion copolymer films clearly influence the initial static water contact angle. Common emulsifiers such as sodium dodecyl sulfate lead to lower contact angles than poly(ionic liquid) dispersions which are a new class of stabilizers for emulsion polymerization. In contrast to the static contact angle, the time-dependent properties of the water contact angle reflect the particular conditions during the polymerization. It is a general conclusion of this study that waterborne emulsion copolymers show a distinctly different time-dependent behavior of the contact angle than bulk polymers of the same molecular composition regardless of the initial static contact angle.  相似文献   

10.
11.
Summary The method ofSiwoloboff is investigated for its ability to determine the boiling temperature of impure liquids, the representative boiling temperature of mixtures, and the boiling range.Emich's method gives good constancy of boiling temperature with impure liquids.
Zusammenfassung Die Eignung der Methode vonSiwoloboff zur Bestimmung des Siedepunktes nicht ganz reiner Substanzen, der charakteristischen Siedetemperatur von Flüssigkeitsgemischen und deren Siedebereiches wurde untersucht. Die Siedepunktbestimmung nachEmich gibt zufriedenstellende Konstanz des Siedepunktes unreiner Flüssigkeiten.

Résumé On a étudié la méthode deSiwoloboff pour juger si elle peut convenir aux déterminations de la température d'ébullition des liquides impurs, de la température d'ébullition caractérisant les mélanges ainsi qu'à l'étude des domaines d'ébullition. La méthode d'Emich donne une température d'ébullition présentant une constance satisfaisante pour les liquides impurs.
  相似文献   

12.
Surfaces play an important role in defining the properties of materials, controlling wetting, adsorption, or desorption of biomolecules, and sealing/bonding of different materials. We have combined microscale features with plasma-etched nanoscale roughness and chemical modification to tailor the wettability of the substrates. Cyclic olefin polymers and copolymers (COPs/COCs) were processed to make a range of surfaces with controlled superhydrophobic or -hydrophilic properties. The hydrophobic properties of the polymers were increased by the introduction of microstructures of varying geometry and spacing through hot embossing. The COC/COP substrates were functionalized by plasma activation in O(2), CF(4), and a mixture of both gases. The plasma etching introduces nanoscale roughness and also chemically modifies the surface, creating either highly hydrophilic or highly hydrophobic (contact angle >150°) surfaces depending on the gas mixture. The influence of geometry and chemistries was characterized by atomic force microscopy, contact angle measurements, and X-ray photoelectron spectroscopy. Measurements of the contact angle and contact angle hysteresis demonstrated long-term stability of the superhydrophobic/superhydrophilic characteristics (>6 months).  相似文献   

13.
By employing temperature-programmed desorption and time-of-flight secondary ion mass spectroscopy, the adsorption of water on the hydrophilic and hydrophobic surfaces of a lipid (DPPC) film has been investigated. It could be shown that it is possible to prepare lipid films ex situ with a preferential orientation of the lipid molecules on a solid support and to retain their specific properties under ultrahigh vacuum conditions. The water adsorption and desorption kinetics on the hydrophilic and hydrophobic surfaces provided by a lipid film are discussed in terms of their structural and chemical properties.  相似文献   

14.
The possibility of describing the curves of boiling on the results of studies conducted only at normal pressure, as well as of the existence of gas-liquid systems with the parameters above the critical point parameters.  相似文献   

15.
Polyethylene films were prepared with phase separation at lower temperatures. The wettability of such films varied from hydrophobicity to superhydrophobicity as the processing temperature decreased owing to the increase of surface roughness. Storing the as-prepared films at subzero temperature (-15 °C), it was found that the water contact angle of the film decreased obviously, and the decrease depended on the corresponding roughness. Further keeping the as-prepared films at room temperature for 30 min, the water contact angle would return to the normal value, which indicated that the reversible switching of surface wettability can be controlled by the environmental temperature.  相似文献   

16.
Impact of lipopolysaccharide coating on kaolinite and Na-montmorillonite wettability was investigated. Kaolinite had greater diiodomethane contact angles, smaller water and formamide contact angles than Na-montmorillonite. After lipopolysaccharide coating, diiodomethane and formamide contact angles decreased, while water contact angles increased for both kaolinite and Na-montmorillonite. The decrease and increase in liquid contact angles after lipopolysaccharide coating were most pronounced for lipopolysaccharide extracted from Pseudomonas aeruginosa, followed by Pseudomonas fluorescens and Echerichia coli. Clay particle wettability was determined by particle surface thermodynamic properties. Both kaolinite and Na-montmorillonite exhibited a monopolar surface and the monopolarity decreased after lipopolysaccharide coating, indicating an increase in hydration or surface wetness. The origins of interactions of clay particles with water molecules were discussed and related to clay particle water wettability.  相似文献   

17.
This letter reports the enhancing effects of a nanofiber network structure on stimuli-responsive wettability switching. Thermoresponsive coatings composed of nanofibers were prepared by electrospinning from thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAAm). The nanofiber coatings showed a large amplitude of thermoresponsive change in the wettability from hydrophilic to hydrophobic states compared to a smooth cast film. In particular, the combination of the surface chemistry and unique topology of the electrospun nanofiber coatings enables a transition from the Wenzel state to the metastable Cassie-Baxter state with an increase in temperature and consequently an enhanced amplitude of change in the water contact angles: the apparent contact angle differences between 25 and 50 °C are Δθ*(25-50?°C?)= 108 and 10° for the nanofiber coatings with a diameter of 830 nm and a smooth cast film, respectively. The fabrication of the 3D nanofiber network structure by electrospinning from stimuli-responsive materials is a promising option for highly responsive surfaces in wettability.  相似文献   

18.
Self-organized TiO2 nanotube layers were grown on Ti by electrochemical anodization. As prepared, these layers showed a super-hydrophilic wetting behaviour. When modified with organic molecules, octadecylsilane (C18H37SiH3) or octadecylphosphonic acid (C18H37PO(OH)2), the layers show a super-hydrophobic behaviour. We demonstrate how the tubular geometry of the TiO2 layers combined with UV induced decomposition of the organic monolayers (SAM) can be used to adjust the surface wetting properties to any desired degree from super-hydrophobic to super-hydrophilic.  相似文献   

19.
The wetting of amorphous poly(dimethylsiloxane) (PDMS) surfaces by water has been studied using molecular dynamics simulations. PDMS surfaces were generated by compressing a long PDMS chain between two elastic boundaries at atmospheric pressure. Oxidation of the PDMS surface, achieved in real systems by exposure to air plasma or corona discharge, was modeled by replacing methyl groups on the PDMS chain with hydroxyl groups. Three surfaces of varying degrees of oxidation were characterized by measuring the water contact angle and the roughness. The dependence of the microscopic contact angle on drop size was measured from time averaged density profiles. The macroscopic contact angle was measured directly using a cylindrical drop of infinite length with zero contact line curvature. The measured macroscopic contact angle ranged from approximately 125 degrees on the untreated surface to 75 degrees on the most oxidized surface studied. The line tension was found to increase with increasing degree of oxidation, from a negligible value on the untreated surface to approximately 5x10(-11) J m(-1) on the most heavily oxidized surface.  相似文献   

20.
Using large-scale molecular-dynamic (MD) simulations, we have shown previously that the classical Lucas–Washburn equation commonly employed to describe capillary imbibition and drainage should be modified to include dynamic contact-angle effects. In addition, we have demonstrated how these effects can be accounted for using the molecular-kinetic theory of dynamic wetting. In a further publication, we presented theoretical arguments and experimental evidence that the velocity of wetting depends on the intrinsic wettability of the solid surface in such a way that there exists an optimum contact angle at which the velocity of wetting is a maximum. Here, we combine these ideas to show how the maximum speeds of capillary imbibition and drainage are affected both by the pore wettability and the pressures used to drive capillary displacement. In particular, we introduce the concept of dynamic wetting transitions (DWTs) and discuss how these limit displacement efficiency and can be manipulated by controlling pore wettability. The results of this work may be beneficial in optimising the performance of capillary processes such as those involved in oil recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号