首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present sufficient global optimality conditions for weakly convex minimization problems using abstract convex analysis theory. By introducing (L,X)-subdifferentials of weakly convex functions using a class of quadratic functions, we first obtain some sufficient conditions for global optimization problems with weakly convex objective functions and weakly convex inequality and equality constraints. Some sufficient optimality conditions for problems with additional box constraints and bivalent constraints are then derived.   相似文献   

2.
We consider convex problems of semi-infinite programming (SIP) using an approach based on the implicit optimality criterion. This criterion allows one to replace optimality conditions for a feasible solution x 0 of the convex SIP problem by such conditions for x 0 in some nonlinear programming (NLP) problem denoted by NLP(I(x 0)). This nonlinear problem, constructed on the base of special characteristics of the original SIP problem, so-called immobile indices and their immobility orders, has a special structure and a diversity of important properties. We study these properties and use them to obtain efficient explicit optimality conditions for the problem NLP(I(x 0)). Application of these conditions, together with the implicit optimality criterion, gives new efficient optimality conditions for convex SIP problems. Special attention is paid to SIP problems whose constraints do not satisfy the Slater condition and to problems with analytic constraint functions for which we obtain optimality conditions in the form of a criterion. Comparison with some known optimality conditions for convex SIP is provided.  相似文献   

3.
The phrase convex optimization refers to the minimization of a convex function over a convex set. However the feasible convex set need not be always described by convex inequalities. In this article we consider a convex feasible set which is described by inequality constraints that are locally Lipschitz and not necessarily convex or differentiable. We show that if the Slater constraint qualification and a simple non-degeneracy condition is satisfied then the Karush–Kuhn–Tucker type optimality condition is both necessary and sufficient.  相似文献   

4.
At each iteration, the algorithm determines a feasible descent direction by minimizing a linear or quadratic approximation to the cost on the feasible set. The algorithm is easy to implement if the approximation is easy to minimize on the feasible set, which happens in some important cases. Convergence rate information is obtained, which is sufficient to enable deduction of the number of iterations needed to achieve a specified reduction in the distance from the optimum (measured in terms of the cost). Existing convergence rates for algorithms for solving such convex problems are either asymptotic (and so do not enable the required number of iterations to be deduced) or decrease as the number of constraints increases. The convergence rate information obtained here, however, is independent of the number of constraints. For the case where the quadratic approximation to the cost is not strictly convex (which includes the linear approximation case), the diameter is the only property of the feasible set which affects the convergence rate information. If the quadratic approximation is strictly convex, the convergence rate is independent of the size and geometry of the feasible set. An application to a control-constrained optimal control problem is outlined.  相似文献   

5.
This paper presents a second-order analysis for a simple model optimal control problem of a partial differential equation, namely, a well-posed semilinear elliptic system with constraints on the control variable only. The cost to be minimized is a standard quadratic functional. Assuming the feasible set to be polyhedric, we state necessary and sufficient second-order optimality conditions, including a characterization of the quadratic growth condition. Assuming that the second-order sufficient condition holds, we give a formula for the second-order expansion of the value of the problem as well as the directional derivative of the optimal control, when the cost function is perturbed. Then we extend the theory of second-order optimality conditions to the case of vector-valued controls when the feasible set is defined by local and smooth convex constraints. When the space dimension n is greater than 3, the results are based on a two norms approach, involving spaces L 2 and L s , with s>n/2 . Accepted 27 January 1997  相似文献   

6.
In this paper we consider optimization problems defined by a quadratic objective function and a finite number of quadratic inequality constraints. Given that the objective function is bounded over the feasible set, we present a comprehensive study of the conditions under which the optimal solution set is nonempty, thus extending the so-called Frank-Wolfe theorem. In particular, we first prove a general continuity result for the solution set defined by a system of convex quadratic inequalities. This result implies immediately that the optimal solution set of the aforementioned problem is nonempty when all the quadratic functions involved are convex. In the absence of the convexity of the objective function, we give examples showing that the optimal solution set may be empty either when there are two or more convex quadratic constraints, or when the Hessian of the objective function has two or more negative eigenvalues. In the case when there exists only one convex quadratic inequality constraint (together with other linear constraints), or when the constraint functions are all convex quadratic and the objective function is quasi-convex (thus allowing one negative eigenvalue in its Hessian matrix), we prove that the optimal solution set is nonempty.  相似文献   

7.
We consider a nonsmooth semi-infinite programming problem with a feasible set defined by inequality and equality constraints and a set constraint. First, we study some alternative theorems which involve linear and sublinear functions and a convex set and we propose several generalizations of them. Then, alternative theorems are applied to obtain, under different constraint qualifications, several necessary optimality conditions in the type of Fritz-John and Karush-Kuhn-Tucker.  相似文献   

8.
Joydeep Dutta 《TOP》2005,13(2):185-279
During the early 1960’s there was a growing realization that a large number of optimization problems which appeared in applications involved minimization of non-differentiable functions. One of the important areas where such problems appeared was optimal control. The subject of nonsmooth analysis arose out of the need to develop a theory to deal with the minimization of nonsmooth functions. The first impetus in this direction came with the publication of Rockafellar’s seminal work titledConvex Analysis which was published by the Princeton University Press in 1970. It would be impossible to overstate the impact of this book on the development of the theory and methods of optimization. It is also important to note that a large part of convex analysis was already developed by Werner Fenchel nearly twenty years earlier and was circulated through his mimeographed lecture notes titledConvex Cones, Sets and Functions, Princeton University, 1951. In this article we trace the dramatic development of nonsmooth analysis and its applications to optimization in finite dimensions. Beginning with the fundamentals of convex optimization we quickly move over to the path breaking work of Clarke which extends the domain of nonsmooth analysis from convex to locally Lipschitz functions. Clarke was the second doctoral student of R.T. Rockafellar. We discuss the notions of Clarke directional derivative and the Clarke generalized gradient and also the relevant calculus rules and applications to optimization. While discussing locally Lipschitz optimization we also try to blend in the computational aspects of the theory wherever possible. This is followed by a discussion of the geometry of sets with nonsmooth boundaries. The approach to develop the notion of the normal cone to an arbitrary set is sequential in nature. This approach does not rely on the standard techniques of convex analysis. The move away from convexity was pioneered by Mordukhovich and later culminated in the monographVariational Analysis by Rockafellar and Wets. The approach of Mordukhovich relied on a nonconvex separation principle called theextremal principle while that of Rockafellar and Wets relied on various convergence notions developed to suit the needs of optimization. We then move on to a parallel development in nonsmooth optimization due to Demyanov and Rubinov called Quasidifferentiable optimization. They study the class of directionally differentiable functions whose directional derivatives can be represented as a difference of two sublinear functions. On other hand the directional derivative of a convex function and also the Clarke directional derivatives are sublinear functions of the directions. Thus it was thought that the most useful generalizations of directional derivatives must be a sublinear function of the directions. Thus Demyanov and Rubinov made a major conceptual change in nonsmooth optimization. In this section we define the notion of a quasidifferential which is a pair of convex compact sets. We study some calculus rules and their applications to optimality conditions. We also study the interesting notion of Demyanov difference between two sets and their applications to optimization. In the last section of this paper we study some second-order tools used in nonsmooth analysis and try to see their relevance in optimization. In fact it is important to note that unlike the classical case, the second-order theory of nonsmoothness is quite complicated in the sense that there are many approaches to it. However we have chosen to describe those approaches which can be developed from the first order nonsmooth tools discussed here. We shall present three different approaches, highlight the second order calculus rules and their applications to optimization.  相似文献   

9.
This paper provides characterizations of the weakly minimal elements of vector optimization problems and the global minima of scalar optimization problems posed on locally convex spaces whose objective functions are deterministic while the uncertain constraints are treated under the robust (or risk-averse) approach, i.e. requiring the feasibility of the decisions to be taken for any possible scenario. To get these optimality conditions we provide Farkas-type results characterizing the inclusion of the robust feasible set into the solution set of some system involving the objective function and possibly uncertain parameters. In the particular case of scalar convex optimization problems, we characterize the optimality conditions in terms of the convexity and closedness of an associated set regarding a suitable point.  相似文献   

10.
In multi-objective convex optimization it is necessary to compute an infinite set of nondominated points. We propose a method for approximating the nondominated set of a multi-objective nonlinear programming problem, where the objective functions and the feasible set are convex. This method is an extension of Benson’s outer approximation algorithm for multi-objective linear programming problems. We prove that this method provides a set of weakly ε-nondominated points. For the case that the objectives and constraints are differentiable, we describe an efficient way to carry out the main step of the algorithm, the construction of a hyperplane separating an exterior point from the feasible set in objective space. We provide examples that show that this cannot always be done in the same way in the case of non-differentiable objectives or constraints.  相似文献   

11.
A system of linear inequality and equality constraints determines a convex polyhedral set of feasible solutionsS. We consider the relation of all individual constraints toS, paying special attention to redundancy and implicit equalities. The main theorem derived here states that the total number of constraints together determiningS is minimal if and only if the system contains no redundant constraints and/or implicit equalities. It is shown that the existing theory on the representation of convex polyhedral sets is a special case of the theory developed here.The author is indebted to Dr. A. C. F. Vorst (Erasmus University, Rotterdam, Holland) for stimulating discussions and comments, which led to considerable improvements in many proofs. Most of the material in this paper originally appeared in the author's dissertation (Ref. 1). The present form was prepared with partial support from a NATO Science Fellowship for the Netherlands Organization for the Advancement of Pure Research (ZWO) and a CORE Research Fellowship.  相似文献   

12.
Characterizations of the containment of a convex set either in an arbitrary convex set or in the complement of a finite union of convex sets (i.e., the set, described by reverse-convex inequalities) are given. These characterizations provide ways of verifying the containments either by comparing their corresponding dual cones or by checking the consistency of suitable associated systems. The convex sets considered in this paper are the solution sets of an arbitrary number of convex inequalities, which can be either weak or strict inequalities. Particular cases of dual characterizations of set containments have played key roles in solving large scale knowledge-based data classification problems where they are used to describe the containments as inequality constraints in optimization problems. The idea of evenly convex set (intersection of open half spaces), which was introduced by W. Fenchel in 1952, is used to derive the dual conditions, characterizing the set containments.  相似文献   

13.
In this paper we are concerned with the problem of boundedness and the existence of optimal solutions to the constrained optimization problem. We present necessary and sufficient conditions for boundedness of either a faithfully convex or a quasi-convex polynomial function over the feasible set defined by a system of faithfully convex inequality constraints and/or quasi-convex polynomial inequalities, where the faithfully convex functions satisfy some mild assumption. The conditions are provided in the form of an algorithm, terminating after a finite number of iterations, the implementation of which requires the identification of implicit equality constraints in a homogeneous linear system. We prove that the optimal solution set of the considered problem is nonempty, this way extending the attainability result well known as the so-called Frank-Wolfe theorem. Finally we show that our extension of the Frank-Wolfe theorem immediately implies continuity of the solution set defined by the considered system of (quasi)convex inequalities.  相似文献   

14.
We consider a nondifferentiable convex multiobjective optimization problem whose feasible set is defined by affine equality constraints, convex inequality constraints, and an abstract convex set constraint. We obtain Fritz John and Kuhn–Tucker necessary and sufficient conditions for ε-Pareto optimality via a max function. We also provide some relations among ε-Pareto solutions for such a problem and approximate solutions for several associated scalar problems.  相似文献   

15.
Characterization of the containment of a polyhedral set in a closed halfspace, a key factor in generating knowledge-based support vector machine classifiers [7], is extended to the following: (i) containment of one polyhedral set in another; (ii) containment of a polyhedral set in a reverse-convex set defined by convex quadratic constraints; (iii) Containment of a general closed convex set, defined by convex constraints, in a reverse-convex set defined by convex nonlinear constraints. The first two characterizations can be determined in polynomial time by solving m linear programs for (i) and m convex quadratic programs for (ii), where m is the number of constraints defining the containing set. In (iii), m convex programs need to be solved in order to verify the characterization, where again m is the number of constraints defining the containing set. All polyhedral sets, like the knowledge sets of support vector machine classifiers, are characterized by the intersection of a finite number of closed halfspaces.  相似文献   

16.
17.
The convex feasibility problem asks to find a point in the intersection of finitely many closed convex sets in Euclidean space. This problem is of fundamental importance in the mathematical and physical sciences, and it can be solved algorithmically by the classical method of cyclic projections.In this paper, the case where one of the constraints is an obtuse cone is considered. Because the nonnegative orthant as well as the set of positive-semidefinite symmetric matrices form obtuse cones, we cover a large and substantial class of feasibility problems. Motivated by numerical experiments, the method of reflection-projection is proposed: it modifies the method of cyclic projections in that it replaces the projection onto the obtuse cone by the corresponding reflection.This new method is not covered by the standard frameworks of projection algorithms because of the reflection. The main result states that the method does converge to a solution whenever the underlying convex feasibility problem is consistent. As prototypical applications, we discuss in detail the implementation of two-set feasibility problems aiming to find a nonnegative [resp. positive semidefinite] solution to linear constraints in n [resp. in , the space of symmetric n×n matrices] and we report on numerical experiments. The behavior of the method for two inconsistent constraints is analyzed as well.  相似文献   

18.
In linear inverse problems considered in this paper a vector with positive components is to be selected from a feasible set defined by linear constraints. The selection rule involves minimization of a certain function which is a measure of distance from a priori guess. Csiszar made an axiomatic approach towards defining a family of functions, we call it α-divergence, that can serve as logically consistent selection rules. In this paper we present an explicit and perfect dual of the resulting convex programming problem, prove the corresponding duality theorem and optimality criteria, and make some suggestions on an algorithmic solution.  相似文献   

19.
X. Q. Yang  K. W. Meng 《TOP》2014,22(1):31-37
In these comments on the excellent survey by Dinh and Jeyakumar, we briefly discuss some recently developed topics and results on applications of extended Farkas’ lemma(s) and related qualification conditions to problems of variational analysis and optimization, which are not fully reflected in the survey. They mainly concern: Lipschitzian stability of feasible solution maps for parameterized semi-infinite and infinite programs with linear and convex inequality constraints indexed by arbitrary sets; optimality conditions for nonsmooth problems involving such constraints; evaluating various subdifferentials of optimal value functions in DC and bilevel infinite programs with applications to Lipschitz continuity of value functions and optimality conditions; calculating and estimating normal cones to feasible solution sets for nonlinear smooth as well as nonsmooth semi-infinite, infinite, and conic programs with deriving necessary optimality conditions for them; calculating coderivatives of normal cone mappings for convex polyhedra in finite and infinite dimensions with applications to robust stability of parameterized variational inequalities. We also give some historical comments on the original Farkas’ papers.  相似文献   

20.
《Optimization》2012,61(6):627-639
Abstract: In this article, we consider the concave quadratic programming problem which is known to be NP hard. Based on the improved global optimality conditions by [Dür, M., Horst, R. and Locatelli, M., 1998, Necessary and sufficient global optimality conditions for convex maximization revisited, Journal of Mathematical Analysis and Applications, 217, 637–649] and [Hiriart-Urruty, J.B. and Ledyav, J.S., 1996, A note in the characterization of the global maxima of a convex function over a convex set, Journal of Convex Analysis, 3, 55–61], we develop a new approach for solving concave quadratic programming problems. The main idea of the algorithms is to generate a sequence of local minimizers either ending at a global optimal solution or at an approximate global optimal solution within a finite number of iterations. At each iteration of the algorithms we solve a number of linear programming problems with the same constraints of the original problem. We also present the convergence properties of the proposed algorithms under some conditions. The efficiency of the algorithms has been demonstrated with some numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号