首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper is devoted to the analysis of cracking and deformability of concrete tension members reinforced with fiber-reinforced polymer (FRP) rods. A theoretical nonlinear model, derived from a cracking analysis founded on slip and bond stresses, is adopted for evaluating the crack width, crack spacing, and elongation of tension members. The procedure takes into account the local bond-slip law, experimentally determined by means of pullout tests, and allows us to evaluate the influence of tensile stiffening. The analysis is performed with considering all parameters influencing the behavior of tension members, such as the concrete strength, the kind of FRP rebars, the surface treatment of FRP rebars, and the concrete cover thickness. The theoretical predictions are compared with available experimental results, obtained on cylindrical concrete specimens reinforced with carbon FRP (CFRP) rods, and with predictions of the traditional models usually adopted for design purposes.  相似文献   

2.
The bond of ordinary steel reinforcement in concrete depends on many factors, such as the pullout resistance, the geometry of a concrete member, the placement of a bar in the member cross section, the cover splitting, the confinement caused by concrete and the surrounding reinforcement, the order of bond-crack appearance, and the bond-stress distribution along the bond length. The bond of FRP reinforcement depends on even a greater number of factors. Moreover, the types of FRP bars are numerous. Their surface is weaker than that of steel bars and may fracture by bond forces. The surface of FRP bars is softer and does not create as high local stress concentrations in bond contact points to concrete as the harder steel bars do. This fact often delays the appearance of cover splitting cracks along the bars. However, the load necessary for developing the crack pattern of ultimate splitting failure in concrete is then very dependent on whether the bar surface is glossy or rough. The FRP reinforcement can also be used for external shear and/or flexural strengthening of existing members. For this application, FRP bars are placed in grooves cut on the surface of the member to be strengthened and are fixed there with a cement mortar or epoxy paste. In such an application, the performance of bond between the FRP rod and the mortar or resin and then between the mortar or resin and concrete is critical for the effectiveness of the technique. The presence of two interfaces increases the number of parameters needed to characterize the global joint behavior and introduces new possible failure modes. The fundament for the bond resistance estimation should be an accepted bond philosophy linked to appropriate models. A system of bond tests should provide necessary coefficients for the models.  相似文献   

3.
The behavior of fiber reinforced plastic (FRP) concrete elements under service conditions is analyzed. Taking into account the real constitutive law of materials and local bond-slip law which adequately describes the interaction between the FRP reinforcement and concrete, a numerical procedure is proposed for obtaining moment-curvature relationships for a cracked beam element. Using the moment-curvature laws, the load-deflection analysis of FRP concrete beams is carried out. To study the influence of geometric and mechanical parameters, a numerical investigation was carried out and the results obtained were compared with those from other methods and Codes. The results of the experimental investigation are described and compared with those of the proposed procedure; the comparison shows good agreement between the theoretical and experimental results.Department of Materials Science, University of Lecce, Via per Arnesano, 73100 Lecce, Italy. Published in Mekhanika Kompozitnykh Materialov, Vol. 35, No. 2, pp. 163–172, March–April, 1999.  相似文献   

4.
Compressive strain of concrete is accompanied by rotation of the rigid aggregate and by local shifts of the cement matrix, which by analogy with local deformation of metals is the cause of a decrease of the real strength of the material. It is shown that deformation of concrete with haydite and granite aggregates in the presence of a heat supply (within limits of positive operating temperatures) is distinguished by damping of deformations in the first case and by local deformation of the aggregate in the second.Presented at the Ninth International Conference on Mechanics of Composite Materials, Riga. October, 1995.Kharkov State Technical Academy of Railroad Transport, Ukraine. Kharkov State Technical Construction and Architecture University, Ukraine. Kharkov Fire Safety Institute Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 32, No. 2, pp. 202–208, March–April, 1996.  相似文献   

5.
The effect of the geometry of teflon test pieces on the speed of sound and the logarithmic decrement of longitudinal vibrations has been investigated. Conditions for the determination of the speed of sound in an infinite medium and in a rod have been obtained. A method is given for determining the dynamic moduli of longitudinal elasticity, the shear modulus, and the dynamic Poisson's ratio on test pieces in the form of rods and prisms, starting with a length of 30 mm.Mekhanika Polimerov, Vol. 2, No. 4, pp. 557–564, 1966  相似文献   

6.
The results of a study of the damage suffered by thin-walled polymer shells are evaluated on the basis of an analysis of the process of crack formation and the variation of the modulus of elasticity under cyclic deformation. The process of fatigue failure has been studied in relation to shells made of three groups of polymeric materials. It is shown that for the polymers investigated there are at least two different fatigue fracture mechanisms. Data on the crack growth kinetics are presented.Plastopolimer Research and Production Association, Leningrad; Lensovet Leningrad Technological Institute. Translated from Mekhanika Polimerov, No. 6, pp. 1019–1026, November–December, 1971.  相似文献   

7.
The shear failure of reinforced concrete beams needs more attention than the bending failure since no or only small warning precedes the failure. For this reason, it is of utmost importance to understand the shear bearing capacity and also to be able to undertake significant rehabilitation work if necessary. In this paper, a design model for the shear strengthening of concrete beams by using fiber-reinforced polymers (FRP) is presented, and the limitations of the truss model analogy are highlighted. The fracture mechanics approach is used in analyzing the bond behavior between the FRP composites and concrete. The fracture energy of concrete and the axial rigidity of the FRP are considered to be the most important parameters. The effective strain in the FRP when the debonding occurs is determined. The limitations of the anchorage length over the cross section are analyzed. A simple iterative design method for the shear debonding is finally proposed. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 3, pp. 357–372, May–June, 2008.  相似文献   

8.
A tyre design consisting of a steel-cord-reinforced rigid bond with sides connected to the wheel disc and a protector(tread) in contact with the road is examined. The tread is in the form of a set of rods connected by one end to the band, with the other end either free or in contact with the road. The rod end in contact with the road is acted upon by a force applied from the road, represented by a force normal to the road plane and a shear force due to dry friction. If the modulus of the shear force does not exceed the magnitude of the normal force multiplied by the dry friction coefficient, there is no slip at the contact point. In the opposite case, the rod end will be displaced along the road by an amount sufficient to distribute the normal and shear forces. The dynamics of longitudinal and transverse strains of the rods in contact with the road is analysed using the motion separation method in the quasi-static approximation. The behaviour of the tread rods as a function of the vertical displacement of the wheel centre is investigated, the contact area is found and the conditions are determined under which the contact area is divided into parts in which either slip of the rod ends occurs or does not occur, depending on the magnitude of the longitudinal displacement of the wheel centre or its turning relative to the horizontal axis. An analogue of a continuous model of a rod-like tread is considered, and the magnitudes of the forces and moments are found as a function of the wheel disc displacements. The equations of wheel rolling are obtained, and the conditions under which steady motions exist are found.  相似文献   

9.
Conclusions A significant effect of the addition of LCP on the mechanical properties and their anisotropy has been established. Already, if one considers the shape of curves of the stress-strain relationship it can be seen that curves typical for semicrystalline polymers (pure polypropylene) with clearly visible yield point and significant cold drawing leading to an anisotropic stiffening are changing into curves without yielding and with a brittle failure (LC-rich blends). Generally, the tensile elasticity modulus increases with increasing LCP content for both MD and TD. The maximum value of anisotropy of elastic properties was noted for a rather low content of LCP (c = 5%). On the contrary, the stress at yield decreases with increasing LCP content. The same was observed for the strain at yield but in both cases an important increase of anisotropy has taken place. Consequently, the total elongation during drawing (strain at break) showed a drastic decrease for blends with higher LCP content (about 60–80 times). The addition of the LCP to polypropylene has led to a stiffness increase (higher elasticity modulus) but simultaneously to a considerable plasticity decrease. As a confirmation of these observations, there served also the creep test where a decrease of the creep compliance (by two times) for LC-rich blends as compared with pure PP was noted.It also should be emphasized that, generally, a smaller effect of LCP content on the elastic deformation was noted than that on the time dependent effects (nonelastic creep deformation).Published in Mekhanika Kompozitnykh Materialov, Vol. 30, No. 4, pp. 442–450, July–August, 1994.  相似文献   

10.
Reinforcing units, FRP, of unidirectional fiber composites for concrete have elastic behavior up to tensile failure. For safety reasons an elongation of 3% at maximum load is usually required for the reinforcement. Ductile behavior with the necessary elongation and stress hardening could be obtained with braided fiber strands around a core of foam plastic, thin glass fiber cylindrical shell, or unidirectional carbon fibers. Braids around a porous core reveal the ductility when epoxy resin breaks up and collapse of core enables the braids to rotate. The same seems to happen at that cross section, where carbon fiber core breaks in tension. The best result is obtained using a cylindrical glass fiber reinforced core shell surrounded with aramid fiber braid.Presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October, 1995.Division of Building Materials, Chalmers University of Technology, S412 96 Göteborg, Sweden. Institute of Polymer Mechanics, Latvian Academy of Sciences, Riga, LV-1006 Latvia. Published in Mekhanika Kompozitnykh Materialov, Vol. 32, No. 2, pp. 167–179, March–April, 1996.  相似文献   

11.
The full strain field near the interface of steel fiber/concrete in a half-mold specimen was measured using a combined method of pullout test and digital image correlation. The strain localization mechanism of the interfacial failure is discussed. The strain distributions near the interface at a straight fiber under different loads show that the interfacial shear failure has a distinct characteristic of intervals in time and space directly related to the strain localization, which makes the interfacial failure initiate, develop and transfer successively. In particular, the local strain distributions around pores near the straight fiber interface demonstrate that the strain changes its sign at the irregular parts of the pore where the initial debonding took place and the deformation path is affected by the pore.  相似文献   

12.
Exact solutions and approximations have been obtained for the problems of a disk with an opening twisted by opposite moments uniformly distributed over the inner and outer surfaces and of a conical bar twisted by a moment applied at the vertex of the cone. An approximate solution has been found for the problem of a flat wedge bent by pressure uniformly distributed along one of its sides. The disk is made of nonlinear viscoelastic material. In [1] it was proposed that problems for such a material be solved by the method of approximations. The rheological law of the nonlinear viscoelastic material of the cone and the wedge in Laplace—Carson transforms is the relation of the theory of small elastoplastic deformations with a power law of strain hardening.Institute of Electronic Engineering, Moscow. Translated from Mekhanika Polimerov, No. 6, pp. 1071–1076, November–December, 1971.  相似文献   

13.
Numerical analysis of fracture in concrete is studied with a simplified discrete crack method. The discrete crack method is a meshless method in which the crack is modeled by discrete cohesive crack segments passing through the nodes. The cohesive crack segments govern the non-linear response of concrete in tension softening and introduce anisotropy in the material model. The advantage of the presented discrete crack method over other discrete crack method is its simplicity and applicability to many cracks. In contrast to most other discrete crack methods, no representation of the crack surface is needed. On the other hand, the accuracy of discrete crack methods is maintained. This is demonstrated through several examples.  相似文献   

14.
Conclusions 1. At low rates of elongation the state of a polymer melt depends neither on the strain nor on the strain rate. The frequency dependence of the components of the complex longitudinal modulus, measured by superposition of a periodic deformation on a steady longitudinal flow, resemble, at low elongation rates, the frequency characteristics of the components of the complex shear modulus.2. Relaxation processes due to steady longitudinal flow affect the components of the complex longitudinal modulus measured by periodic deformation.3. A melt of a polydisperse polymer under conditions of longitudinal flow begins, at some definite strain rate, to respond to periodic deformation as a rubber-like body and continues to do so as the amount of elongation increases, which is manifested by the trend of the frequency dependence of the modulus component E', this trend becoming similar to that for a solid body.4. As the strain increases during elongation, the upper boundary of the flow range, which is determined by the periodic deformation, shifts toward low frequencies.5. The viscoelasticity characteristics of a material subject to elongation can be accurately enough described by nonlinear equations with the aid of the linear shear-relaxation spectrum.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 3, pp. 507–513, May–June, 1978.  相似文献   

15.
The long-term failure of a layered viscoelastic composite caused by precritical propagation of a coin-shaped crack is studied. It is assumed that the crack is located inside a viscoelastic layer (the layer of binder) parallel to the layer orientation. The crack development due to stretching of the composite massive by uniformly distributed external forces increasing with time is described. It is assumed that these forces act perpendicularly to the plane of crack propagation. The investigation is carried out within the framework of Boltzmann-Volterra linear theory for resolving integral operators with difference kernels describing the deformation of a material with time-dependent rheological properties. An irrational function of the viscoelastic integral operator is presented in the form of a proper continued fraction and transformed using the method of operator continued fractions. Numerical solutions are obtained for resolving integral operators with the kernel in the form of Rabotnov exponential-fractional function. The kinetics of crack growth with a prefailure zone commensurable with the crack length is described. A comparison with the results obtained in terms of the concept of thin structure of the crak tip is given.Timoshenko Institute of Mechanics, Ukrainian National Academy of Sciences, Kiev, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 545–558, July–August, 2000.  相似文献   

16.
The strengthening of concrete structures in situ with externally bonded fiber-reinforced plastic (FRP) composite sheets is increasingly being used for the repair and rehabilitation of existing structures. However, debonding along the FRP-concrete interface can lead to premature failure of the structures. The interfacial stresses have played a significant role in understanding this premature debonding failure of such repaired structures. In this paper, an improved theoretical analysis of the interfacial stresses is presented for a simply supported concrete beam bonded with a FRP plate. The shear strains of the adherends have been included in the present theoretical analysis by assuming a parabolic distribution of shear stress across their thickness. Contrary to some existing studies, the assumption that both adherends have the same curvature is not used in the present investigation. The results of this numerical study are beneficial for understanding the mechanical behavior of material interfaces and for the design of hybrid FRP-reinforced concrete structures.  相似文献   

17.
As a result of the action of periodic finite-amplitude shear deformations filled high-pressure polyethylene melts exhibit thixotropic properties. The effect of the previous deformation history on the frequency dependence of the complex dynamic shear modulus is investigated.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR Riga. Translated from Mekhanika Polimerov, Vol. 4, No. 5, pp. 927–931, September–October, 1968.  相似文献   

18.
A linear (small-amplitude) periodic shear deformation of anisotropic viscoelastic liquids obeying the Akay–Leslie rheological model is considered. The frequency dependences of the real and imaginary components of the complex shear modulus and complex normal-stress coefficient are determined. A comparison between calculation results and test data on the shear flow of poly(-benzylglutamate) in m-cresol is carried out. It is stated that, if the material is characterized by some initial orientation, both components of the complex shear modulus contain a multiplier which depends on the degree of the initial orientation and increases the values of the components compared with those for an initially isotropic material. The model predicts that, in a periodic shear flow, the components of shear and normal stresses are constant and, like the components of shear modulus, are independent of deformation frequency. If the parameter d 0 of the Akay–Leslie model is equal to zero, the values of its other parameters can be determined from experimental results on periodic shear flow.  相似文献   

19.
The behavior of fiber reinforced plastic (FRP) concrete elements under service conditions is analyzed. Taking into account the real constitutive law of materials and local bond-slip law which adequately describes the interaction between the FRP reinforcement and concrete, a numerical procedure is proposed for obtaining moment-curvature relationships for a cracked beam element. Using the moment-curvature laws, the load-deflection analysis of FRP concrete beams is carried out. To study the influence of geometric and mechanical parameters, a numerical investigation was carried out and the results obtained were compared with those from other methods and Codes. The results of the experimental investigation are described and compared with those of the proposed procedure; the comparison shows good agreement between the theoretical and experimental results.  相似文献   

20.
Static fatigue in rubbers is examined as a process of crack development at subcritical loads, with and without changes in the structure of the material. It is shown that the service life depends on the conditions of deformation preceding failure and on the susceptibility of the rubber to strain hardening (crystallization).Mekhanika polimerov, Vol. 1, No. 1, pp. 111–116, 1965  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号