首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
The thermal properties of twelve Janus-type dendrimers up to the second generation were evaluated by termogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Compounds consist of the dendritic bisMPA based polyester moieties, and either 3,4-bis-dodecyloxybenzoic acid, 3,5-bis-dodecyloxybenzoic acid or 3,4,5-tris-dodecyloxybenzoic acid moieties, attached to opposite sides of the pentaerythritol core. The thermal stability of the compounds was evaluated by TGA, displaying onset decomposition temperatures (Td) at around 250 °C. DSC measurements upon heating and cooling confirmed that OH terminated Janus dendrimers featuring large polarity difference in opposite sides display liquid crystalline phases with exception of 3,5-type G1 dendrimer; while acetonide terminated dendrimers displayed merely melting transitions. Dendrimers having terminal alkyl chains at positions 3,4 or 3,4,5 in aromatic moieties exhibited enantiotropic mesophases. However, the thermal behavior of the dendrimers with 3,5-substitution pattern was different: the 3,5-type G1 dendrimer exhibit a lack of mesomorphic transition, and in the case of the 3,5-type G2 dendrimer, the mesophase was absent in the first heating scan but was observed during the subsequent cooling and heating scans at the rate of 10 °C/min.  相似文献   

2.
The decomposition characteristics of Pt(II) and Pt(IV) complexes in hydrogen, air and argon were investigated by thermal gravimetric and differential thermal analysis. Based on weight-loss measurements, the thermal stability in hydrogen increased in the order: hexachloroplatinic acid<platinum acetyl acetonate<platinum diamino dinitrite<tetrammine platinous hydroxide<tetrammine platinous chloride<platinum phthalocyanine; whereas in air, the order was: hexachloroplatinic acid<tetrammine platinous hydroxide<platinum acetyl acetonate<platinum diamino dinitrite<tetrammine platinous chloride. The platinum complexes were more stable in air than in hydrogen where decomposition was observed in all platinum samples at temperatures below 200°C.  相似文献   

3.
The thermal decomposition of fluorinated single-walled carbon nanotubes (F-SWNTs), known to result in pristine SWNTs, has been investigated by freezing the gaseous products formed at temperatures between 50 and 500 degrees C under high vacuum in an argon matrix at 10-20 K and analyzing the trapped species by IR spectroscopy. The major products of F-SWNT decomposition are carbonyl fluoride (COF2) below 300 degrees C and CF4 above 300 degrees C. For comparison, graphite fluoride is stable thermally up to 300 degrees C under these conditions, and the major gas-phase species at temperatures below 500 degrees C are CF4 and the CF3 radical. F-SWNTs are thermally less stable than graphite fluoride, and etching of the nanotubes is observed at lower thermolysis temperatures.  相似文献   

4.
Despite considerable attention in the literature being given to the desorption behaviour of smaller volatiles, the thermal properties of complex organics, such as ethanol (C(2)H(5)OH), which are predicted to be formed within interstellar ices, have yet to be characterized. With this in mind, reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to probe the adsorption and desorption of C(2)H(5)OH deposited on top of water (H(2)O) films of various thicknesses grown on highly oriented pyrolytic graphite (HOPG) at 98 K. Unlike many other molecules detected within interstellar ices, C(2)H(5)OH has a comparable sublimation temperature to H(2)O and therefore gives rise to a complicated desorption profile. RAIRS and TPD show that C(2)H(5)OH is incorporated into the underlying ASW film during heating, due to a morphology change in both the C(2)H(5)OH and H(2)O ices. Desorption peaks assigned to C(2)H(5)OH co-desorption with amorphous, crystalline (CI) and hexagonal H(2)O-ice phases, in addition to C(2)H(5)OH multilayer desorption are observed in the TPD. When C(2)H(5)OH is deposited beneath ASW films, or is co-deposited as a mixture with H(2)O, complete co-desorption is observed, providing further evidence of thermally induced mixing between the ices. C(2)H(5)OH is also shown to modify the desorption of H(2)O at the ASW-CI phase transition. This behaviour has not been previously reported for more commonly studied volatiles found within astrophysical ices. These results are consistent with astronomical observations, which suggest that gas-phase C(2)H(5)OH is localized in hotter regions of the ISM, such as hot cores.  相似文献   

5.
The thermal decomposition of basic copper carbonate (malachite; CuCO3·Cu(OH)2) in a dynamic atmosphere of air or nitrogen was studied via TG, DTA and DSC at different heating rates. The non-isothermal kinetic and thermodynamic parameters were estimated. The decomposition course was thoroughly followed by examining the structural and morphological consequences of calcining the material at elevated temperatures by IR, XRD and SEM. The results obtained showed that in air CuCO3·Cu(OH)2 released 0.5 H2O at 195°C, transforming into the azurite structure 2CuCO3·Cu(OH)2. Decomposition then commenced, through two endothermic steps maximized at 325 and 430°C. The resultant product maintained the water released from the decomposition process up to 650–750°C. A schematic decomposition pathway has been proposed in terms of the thermal and physicoanalytical results.  相似文献   

6.
The kinetics of decomposition and subsequent chemistry of adsorbed CF(2)Cl(2), activated by low-energy electron irradiation, have been examined and compared with CCl(4). These molecules have been adsorbed alone and coadsorbed with water ice films of different thicknesses on metal surfaces (Ru; Au) at low temperatures (25 K; 100 K). The studies have been performed with temperature programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and x-ray photoelectron spectroscopy (XPS). TPD data reveal the efficient decomposition of both halocarbon molecules under electron bombardment, which proceeds via dissociative electron attachment (DEA) of low-energy secondary electrons. The rates of CF(2)Cl(2) and CCl(4) dissociation increase in an H(2)O (D(2)O) environment (2-3x), but the increase is smaller than that reported in recent literature. The highest initial cross sections for halocarbon decomposition coadsorbed with H(2)O, using 180 eV incident electrons, are measured (using TPD) to be 1.0+/-0.2 x 10(-15) cm(2) for CF(2)Cl(2) and 2.5+/-0.2 x 10(-15) cm(2) for CCl(4). RAIRS and XPS studies confirm the decomposition of halocarbon molecules codeposited with water molecules, and provide insights into the irradiation products. Electron-induced generation of Cl(-) and F(-) anions in the halocarbon/water films and production of H(3)O(+), CO(2), and intermediate compounds COF(2) (for CF(2)Cl(2)) and COCl(2), C(2)Cl(4) (for CCl(4)) under electron irradiation have been detected using XPS, TPD, and RAIRS. The products and the decomposition kinetics are similar to those observed in our recent experiments involving x-ray photons as the source of ionizing irradiation.  相似文献   

7.
Sawada  Y.  Seki  S.  Sano  M.  Miyabayashi  N.  Ninomiya  K.  Iwasawa  A.  Tsugoshi  T.  Ozao  R.  Nishimoto  Y. 《Journal of Thermal Analysis and Calorimetry》2004,77(3):751-757
Tin-doped indium oxide In2O3 (indium-tin-oxide) transparent conducting films were fabricated on silicon substrates by a dip coating process. The thermal analysis of the ITO films was executed by temperature-programmed desorption (TPD) or thermal desorption spectroscopy (TDS) in high vacuum. Gas evolution from the ITO film mainly consisted of water vapor. The total amount of evolved water vapor increased on increasing the film thickness from approx. 25 to 250 nm and decreased by increasing the preparation temperature from 365 to 600°C and by annealing at the same temperature for extra 10 h. The evolution occurred via two steps; the peak temperatures for 250 nm thick films were approx. 100-120 and 205-215°C. The 25 nm thick films evolved water vapor at much higher temperatures; a shoulder at approx. 150-165°C and a peak at approx. 242°C were observed. The evolution temperatures increased by increasing the preparation and the annealing temperatures except in case of the second peak of the 25 nm thick films. The evolution of water vapor at high temperature was tentatively attributed to thermal decomposition of indium hydroxide, In(OH)3, formed on the surface of the nm-sized ITO particles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The optimum conditions for the analysis of the volatile organic components of pine needles from Pinus densiflora using double-shot pyrolysis-gas chromatography-mass spectrometry (DSP-GC-MS) were investigated with respect to thermal desorption temperature and duration of heating. A total of 41 compounds were identified using thermal desorption temperatures of 150 degrees C, 200 degrees C, 250 degrees C and 300 degrees C. Thermal decomposition products, which include acetol, acetic acid, furfurals and phenols, were observed only at thermal desorption temperatures exceeding 250 degrees C: they were not observed in the extract from a simultaneous distillation extraction (SDE) method. Heating times of 1 s, 6 s, 30 s, 150 s and 300 s were investigated at the thermal desorption temperature of 200 degrees C, whence it was found that thermal decomposition products were produced only at heating times over 30 s. The optimum pyrolyzer conditions for the analysis of pine needles using DSP-GC-MS is 200 degrees C for 6 s. Under these conditions, this method gives comparable results to the SDE method.  相似文献   

9.
We have investigated the temperature-programmed desorption (TPD) of ammonia during the activation of NH4Na-mordenites of different exchange degrees. Using a regularization method, desorption energy distribution functions have been calculated. The obtained results indicate the heterogeneity of the bridging Si-OH-Al groups in HNa-mordenites. This was concluded from the width of the distribution functions and from the presence of submaxima. For HNa-mordenites of exchange degrees below 50%, containing only hydroxyls in the broad channels, two distinct submaxima are present, thus suggesting the presence of at least two kinds of bridging hydroxyls of various acid strengths. In HNa-mordenites of exchange degrees above 50%, the hydroxyls appear in narrow channels and the distribution of ammonia desorption energy broadens on the side of higher energies. This may be related to a strong stabilization of ammonium ions inside narrow channels. The maximum concentrations of hydroxyls of desorption energies between 95 and 135 kJ mol-1 and between 135 and 165 kJ mol-1 calculated from TPD data were 3.9 and 3.3 OH per unit cell (u.c.). These values agree well with our previous IR results of concentrations of hydroxyls in broad and in narrow channels (3.7 and 2.8 OH per u.c.). The TPD data obtained for the heterogeneity of OH groups in HNa-mordenites are in accordance with the IR data concerning ammonia desorption. The IR band of OH groups restoring upon saturation of all the hydroxyls with ammonia and subsequent step-by-step desorption at increasing temperatures shifts to lower frequencies indicating that there are hydroxyls of various acid strengths and the less acidic hydroxyls restore first at lower desorption temperatures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The mechanism of CN bond formation from CH3 and NH3 fragments adsorbed on Pt(111) was investigated with reflection absorption infrared spectroscopy (RAIRS), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). The surface chemistry of carbon-nitrogen coupling is of fundamental importance to catalytic processes such as the industrial-scale synthesis of HCN from CH4 and NH3 over Pt. Since neither CH4 nor NH3 thermally dissociate on Pt(111) under ultrahigh vacuum (UHV) conditions, the relevant surface intermediates were generated through the thermal decomposition of CH3I and the electron-induced dissociation of NH3. The presence of surface CN is detected with TPD through HCN desorption as well as with RAIRS through the appearance of the vibrational features characteristic of the aminocarbyne (CNH2) species, which is formed upon hydrogenation of surface CN at 300 K. The RAIRS results show that HCN desorption at approximately 500 K is kinetically limited by the formation of the CN bond at this temperature. High coverages of Cads suppress CN formation, but the results are not influenced by the coadsorbed I atoms. Cyanide formation is also observed from the reaction of adsorbed N atoms and carbon produced from the dissociation of ethylene.  相似文献   

11.
The thermal decomposition of sixteen metal sulfates was studied by thermogravimetry at heating rates of 2 and 5°C min?1 in flowing air and high-purity nitrogen. Their decomposition behaviors, especially the initial decomposition temperatures, were examined with relation to the thermodynamic functions for decomposition. Of the factors possibly influencing the decomposition temperature, the equilibrium SO3 pressures over the sulfates were evaluated: the equilibrium pressures at the initial temperatures for sulfates of metals, of which the oxidation state was unchanged during decomposition, were nearly equal to 1×10?4 atm at 2°C min?1 in flowing nitrogen.  相似文献   

12.
The IR spectra of surface compounds observed in the course of the temperature-programmed desorption (TPD) of NOx and the TPD spectra are compared. The high-temperature peaks of desorption are related to the decomposition of surface nitrites and nitrates. The low-temperature peaks of NOx desorption with maximums below 140°C are caused by the decomposition of surface nitrosyls. On the heating of surface nitrosyls, the following two reaction paths are possible: desorption at low temperatures and conversion into nitrates. The shape of the TPD spectra of NO depends on the phase composition of test samples. The transition of a tetragonal phase into a monoclinic one occurred upon the surface dehydroxylation of polycrystalline particles with the formation of particles with a tetragonal nucleus and a monoclinic crust. This transition is reversible. The cooling of a sample in a moist atmosphere leads to the transition of the monoclinic crust to the tetragonal phase.  相似文献   

13.
A challenge for forensic examiners is the ageing and characterisation of bone fragments or decomposed skeletal remains. Due to the sensitivity of thermal methods to morphological states, thermal analysis has been selected as a technique which could overcome the difficulties. In this preliminary study, TG-MS was applied to the characterisation of bone fragments derived from the compact bone of pig rib specimens. TG-MS curves were collected by heating bone samples to 1000°C in an argon atmosphere. Under these conditions, both the organic and inorganic phases decomposed, producing a variety of organic fragments and carbon dioxide. Pyrolysis of the organic phase, which is composed predominantly of collagen, occurred resulting in the observation of ion fragments up to 110 amu. Selected fragments were monitored and their observation is discussed in terms of the decomposition of both the collagen phase and the inorganic carbonated hydroxyapatite phase.  相似文献   

14.
Adsorption of SO(2) in the presence of O(2) on Pt/C catalysts often used as electrocatalysts has been investigated by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The amounts of SO(2) adsorption on Pt/C in the presence of O(2) were much higher than those in the absence of O(2) (SO(2)-N(2)) and from the carbon support (Vulcan XC-72) alone. Adsorption is dependent on oxygen concentration over the range 0-20% but reaches saturation at 20% O(2). The spillover of SO(2) from Pt to the carbon support has been proposed for 10, 20, and 40% Pt loadings, characterized by desorption temperatures of approximately 150 and 260 °C for SO(2) adsorbed on Pt and carbon, respectively. Adsorbed Pt-S, C-S, C-SO(x), and Pt-SO(4) species were identified by XPS as S-containing species on both Pt and carbon. Both TPD and XPS indicate that the carbon support plays a major role in SO(2) adsorption, primarily as SO(x) (x = 3, 4). The bonding of S and SO(x) on the carbon support was strong enough that back diffusion to the Pt surface did not occur.  相似文献   

15.
Pt/gamma-Al2O3 catalysts were prepared using hydroxyl-terminated generation four (G4OH) PAMAM dendrimers as the templating agents and the various steps of the preparation process were monitored by extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS results indicate that, upon hydrolysis, chlorine ligands in the H(2)PtCl(6) and K(2)PtCl(4) precursors were partially replaced by aquo ligands to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species, respectively. The results further suggest that, after interaction of such species with the dendrimer molecules, chlorine ligands from the first coordination shell of Pt were replaced by nitrogen atoms from the dendrimer interior, indicating that complexation took place. This process was accompanied by a substantial transfer of electron density from the dendrimer to platinum, indicating that the dendrimer plays the role of a ligand. Following treatment of the H(2)PtCl(6)/G4OH and K(2)PtCl(4)/G4OH complexes with NaBH4, no substantial changes were observed in the electronic or coordination environment of platinum, indicating that metal nanoparticles were not formed during this step under our experimental conditions. However, when the reduction treatment was performed with H2, the formation of extremely small platinum clusters, incorporating no more than four Pt atoms was observed. The nuclearity of these clusters depends on the length of the hydrogen treatment. These Pt species remained strongly bonded to the dendrimer. Formation of larger platinum nanoparticles, with an average diameter of approximately 10 A, was finally observed after the deposition and drying of the H(2)PtCl(6)/G4OH nanocomposites on a gamma-Al(2)O(3) surface, suggesting that the formation of such nanoparticles may be related to the collapse of the dendrimer structure. The platinum nanoparticles formed appear to have high mobility because subsequent thermal treatment in O2/H2, used to remove the dendrimer component, led to further sintering.  相似文献   

16.
The sticking probability for hydrogen on films of Co, Ni, Cu, Ru, Rh, Pd, Ir, and Pt supported on graphite has been measured at a hydrogen pressure of 1 bar in the temperature range 40-200 degrees C. The sticking probability is found to increase in the order Ni, Co, Ir, Pd, Pt, Rh, and Ru at temperatures below 150 degrees C, whereas at higher temperatures, the sticking probability for Pd is higher than for Pt. The sticking probability for Cu is below the detection limit of the measurement. The measured sticking probabilities are slightly lower than those obtained at high hydrogen coverage under ultrahigh vacuum conditions. This could be a consequence of the higher hydrogen pressure used here. The apparent desorption energies extracted from the steady-state desorption rate are found to agree reasonably well with published values for the heat of adsorption at high coverage. However, the sticking probability is not related in a simple way to published values for the heat of adsorption at low coverage, with Ru and Rh giving exceptionally high values for the sticking probability. It is suggested that this is due to the presence of adsorption sites with very low desorption energy on Ru and Rh.  相似文献   

17.
Sol-gel-derived titania films were analyzed by temperature programmed desorption (TPD) and X-ray diffraction (XRD) techniques. The relationship between the TPD curves measured for two types of titania gel films and their crystal structures was investigated. On the basis of the analyses, a preparation process for a titania sol solution containing anatase nanocrystals was designed and developed. Using this process, a colloidal anatase titania sol solution was prepared by heating aqueous titanium hydroxide containing HCl at 60°C for 2 h. The nanocrystal structure of the titania films obtained by coating the sol on glass substrates was confirmed by TPD and XRD measurements.  相似文献   

18.
Surface immobilized polyamidoamine (PAMAM) dendrimer templated Pt nanoparticles were employed as precursors to heterogeneous catalysts. CO oxidation catalysis and in situ infrared spectroscopy were used to evaluate conditions for dendrimer removal. Infrared spectroscopy showed that PAMAM dendrimer amide bonds begin decomposing at temperatures as low as 75 degrees C. Although the amide stretches are completely removed after 3 h of oxidation at 300 degrees C, 16 h were required to reach maximum catalytic activity. Further treatment under oxidizing or reducing atmospheres did not cause substantial changes in activity. Infrared spectroscopy of the activated materials indicated that organic residues, probably surface carboxylates, are formed during oxidation. These surface species passivate the Pt NPs, and their removal was required to fully activate the catalyst. Substantially less forcing activation conditions were possible by employing a CO/O(2)/He oxidation treatment. At appropriate temperatures, CO acts as a protecting group for the Pt surface, helping to prevent fouling of the nanoparticle by organic residues. CO oxidation catalysis and infrared spectroscopy of adsorbed CO indicated that the low temperature activation treatment yielded supported nanoparticles that were substantially similar to those prepared with more forcing conditions.  相似文献   

19.
The adsorption and reaction of NO(2) on BaO (<1, ~3, and >20 monolayer equivalent (MLE))/Pt(111) model systems were studied with temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and infrared reflection absorption spectroscopy (IRAS) under ultra-high vacuum (UHV) as well as elevated pressure conditions. NO(2) reacts with sub-monolayer BaO (<1 MLE) to form nitrites only, whereas the reaction of NO(2) with BaO (~3 MLE)/Pt(111) produces mainly nitrites and a small amount of nitrates under UHV conditions (P(NO(2))≈ 1.0 × 10(-9) Torr) at 300 K. In contrast, a thick BaO (>20 MLE) layer on Pt(111) reacts with NO(2) to form nitrite-nitrate ion pairs under the same conditions. At elevated NO(2) pressures (≥1.0 × 10(-5) Torr), however, BaO layers at all these three coverages convert to amorphous barium nitrates at 300 K. Upon annealing to 500 K, these amorphous barium nitrate layers transform into crystalline phases. The thermal decomposition of the thus-formed Ba(NO(x))(2) species is also influenced by the coverage of BaO on the Pt(111) substrate: at low BaO coverages, these species decompose at significantly lower temperatures in comparison with those formed on thick BaO films due to the presence of a Ba(NO(x))(2)/Pt interface where the decomposition can proceed at lower temperatures. However, the thermal decomposition of the thick Ba(NO(3))(2) films follows that of bulk nitrates. Results obtained from these BaO/Pt(111) model systems under UHV and elevated pressure conditions clearly demonstrate that both the BaO film thickness and the applied NO(2) pressure are critical in the Ba(NO(x))(2) formation and subsequent thermal decomposition processes.  相似文献   

20.
The adsorption and thermal decomposition of alkanethiols (R-SH, where R = CH3, C2H5, and C4H9) on Pt(111) were studied with temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) with synchrotron radiation. Dissociation of sulfhydryl hydrogen (RS-H) of alkanethiol results in the formation of alkanethiolate; the extent of dissociation at an adsorption temperature of 110 K depends on the length of the alkyl chain. At small exposure, all chemisorbed CH3SH, C2H5SH, and C4H9SH decompose to desorb hydrogen below 370 K and yield carbon and sulfur on the surface. Desorption of products containing carbon is observed only at large exposure. In thermal decomposition, alkanethiolate is proposed to undergo a stepwise dehydrogenation: R'-CH2S --> R'-CHS --> R'-CS, R' = H, CH3, and C3H7. Further decomposition of the R'-CS intermediate results in desorption of H2 at 400-500 K and leaves carbon and sulfur on the surface. On the basis of TPD and XPS data, we conclude that the density of adsorption of alkanethiol decreases with increasing length of the alkyl chain. C4H9SH is proposed to adsorb mainly with a configuration in which its alkyl group interacts with the surface; this interaction diminishes the density of adsorption of alkanethiols but facilitates dehydrogenation of the alkyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号