首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-assembly of poly(ethylene oxide)-block-poly(epsilon-caprolactone) five-arm stars (PEO-b-PCL) was studied at the air/water (A/W) interface. The block copolymers consist of a hydrophilic PEO core with hydrophobic PCL chains at the star periphery. All the polymers have the same number of ethylene oxide repeat units (9 per arm), and the number of epsilon-caprolactone repeat units ranges from 0 to 18 per arm. The Langmuir monolayers were analyzed by surface pressure/mean molecular area isotherms, compression-expansion hysteresis experiments, and isobaric relaxation measurements, and the Langmuir-Blodgett (LB) films' morphologies were investigated by atomic force microscopy (AFM). PCL homopolymers crystallize directly at the A/W interface in a narrow surface pressure range (11-15 mN/m). In the same pressure region, the star-shaped block copolymers undergo a phase transition corresponding to the collapse and the crystallization of the PCL chains as shown by the presence of a pseudoplateau in the isotherms. The LB films were prepared by transferring the Langmuir monolayers onto mica substrates at various surface pressures. AFM imaging confirmed the formation of PCL crystals in the LB monolayers of the PCL homopolymers and of the copolymers, but also showed that the PCL segments can undergo additional crystallization after monolayer transfer during water evaporation. The PCL crystal morphologies were also strongly influenced by the surface pressure and by the PEO segments.  相似文献   

2.
A very mild and extremely efficient hydrolysis method for transformation of polystyrene-b-poly(tert-butyl acrylate)(PS-b-PtBA)to polystyrene-b-poly(acrylic acid)(PS-b-PAA) was designed and carried out using more convenient and inexpensive chlorotrimethylsilane/sodium iodide as reagents.The hydrolysis product can self-assemble in aqueous media to give regular micelles with PS block forming the core and PAA block forming the corona,or in tetrahydrofuran (THF) to give reverse micelles with the hydrophilic block in the core.  相似文献   

3.
1. INTRODUCTION The association of amphiphilic block copolymers has been the subject of numerous studies for several decades due to the academic interest and industrial applications [1~7]. It is well-known that block copolymers exhibit interesting domain structures in the solid state and form micelle-like aggregates in selective solvent [8]. They have found many potential applications in drug delivery [9], extraction of proteins [10], corrosion protection [11] as well as removal of aromat…  相似文献   

4.
The influence of surface pressure and subphase temperature on the association of arborescent polystyrene- graft-poly(ethylene oxide) (PS- g-PEO) copolymers at the air-water interface was investigated using the Langmuir balance and atomic force microscopy (AFM) techniques. These dendritic molecules form stable condensed monolayers with surface compressional moduli >250 mN/m. The variation in film thickness observed as a function of surface pressure suggests that at low surface pressures (gaslike phase) the PEO chains remain adsorbed at the air-water interface. At higher surface pressures (condensed phase), the PEO chains partially desorb into the subphase and adopt a more brushlike conformation. Large islandlike clusters with a broad size distribution were observed for samples with PEO contents of up to 15% by weight. In contrast, copolymers with PEO contents of 22-43% displayed enhanced side-by-side association into ribbonlike superstructures upon compression. The same effect was observed even in the absence of compression when the subphase temperature was increased from 12 to 27 degrees C. The temperature-induced association was attributed to increased van der Waals attractive forces between the PS cores relative to the steric repulsive forces between PEO chains in the coronas because the solvent quality for the PEO segments decreased at higher temperatures. The restricted number of superstructures observed for arborescent copolymers as compared with linear- and star-branched PS-PEO block copolymers is attributed to the enhanced structural rigidity of the molecules due to branching.  相似文献   

5.
PS-b-PAA嵌段共聚物包覆碳酸钙的表界面性质和机理研究   总被引:2,自引:0,他引:2  
水淼  岳林海 《无机化学学报》2003,19(10):1073-1078
通过聚苯乙烯-丙烯酸嵌段共聚物(PS-b-PAA)包覆碳酸钙系列样品的溶解曲线,结合近红外光谱和XPS推断得到了PS-b-PAA分子与碳酸钙表面的键合方式、形态和作用机理。认为形成单分子层包覆时表面PS-b-PAA的质量分数(Cb)为0.92%。PS-b-PAA羧基与碳酸钙表面的作用方式为:CaCO3 [-C-CCOO^--]n→Ca[-OOCC-C-]n CO3^2-。在PS-b-PAA浓度较低时。热力学上的不稳定使得链呈现PAA朝下的竖直状态,而随着PS-b-PAA浓度的增加,PS链段岛状聚集体的形成。原先直立和新键合的PS-b-PAA链将逐渐地以包绕的方式结合在碳酸钙的表面。  相似文献   

6.
The interfacial properties of amphiphilic linear diblock copolymers based on poly(ethylene oxide) and poly(epsilon-caprolactone) (PEO-b-PCL) were studied at the air-water (A/W) interface by surface pressure measurements (isotherms and hysteresis experiments). The resulting Langmuir monolayers were transferred onto mica substrates and the Langmuir-Blodgett (LB) film morphologies were investigated by atomic force microscopy (AFM). All block copolymers had the same PEO segment (Mn = 2670 g/mol) and different PCL chain lengths (Mn = 1270; 2110; 3110 and 4010 g/mol). Isothermal characterization of the block copolymer samples indicated the presence of three distinct phase transitions around 6.5, 10.5, and 13.5 mN/m. The phase transitions at 6.5 and 13.5 mN/m correspond to the dissolution of the PEO segments in the water subphase and crystallization of the PCL blocks above the interface similarly as for the corresponding homopolymers, respectively. The phase transition at 10.5 mN/m was not observed for the homopolymers alone or for their blends and arises from a brush formation of the PEO segments anchored underneath the adsorbed hydrophobic PCL segments. AFM analysis confirmed the presence of PCL crystals in the LB films with unusual hairlike/needlelike architectures significantly different from those obtained for PCL homopolymers.  相似文献   

7.
Isotherms of monolayers of poly(ethylene oxide) (PEO) and polystyrene (PS) triblock copolymers spread at the air/water interface were obtained by film balance technique. In a low concentration regime, the PEO segments surrounding the PS cores behave the same way as in monolayers of PEO homopolymers. Langmuir-Blodgett (LB) films prepared by transferring the monolayers onto mica at various surface pressures were analyzed by atomic force microscopy (AFM). The results reveal that these block copolymers form micelles at the air/water interface. Within the micelles, the PS blocks act as anchoring structures at the interface. In several cases, aggregation patterns were modified by the dewetting processes that occur in Langmuir-Blodgett films transferred to solid substrates. High transfer surface pressures and metastable states favored these changes in morphology. A flowerlike surface micelle model is proposed to explain the organization of the surface circular micelles. The model can be generalized and applied to diblock copolymers as well. The model permits prediction of the aggregation number and the size of circular surface micelles formed by PEO/PS block copolymers at the air/water interface.  相似文献   

8.
Star diblock copolymers containing polystyrene (PS) and poly(ethylene oxide) (PEO) were investigated as surface films at the air/water interface. Both classic and dendritic-like stars were prepared containing either a PS core and PEO corona or the reverse. The investigated polymers, consisting of systematic variations in architectures and compositions, were spread at the air/water interface, generating reproducible surface pressure-area isotherms. All of the films could be compressed to higher pressures than would be possible for pure PEO. For stars containing 20% or more PEO, three distinct regions appeared. At higher areas, the PEO absorbs in pancakelike structures at the interface with PS globules sitting atop. Upon compression, a pseudoplateau transition region appeared. Both regions strongly depended on PEO composition. The pancake area and the pseudoplateau width and pressure increased in a linear fashion with an increasing amount of PEO. In addition, minimum limits of PEO chain length and mass percentage were determined for observing a pseudoplateau. At small areas, the film proved less compressible, producing a rigid film in which PS dominated. Here, the film area increased with both molecular weight and the amount of PS. Comparison with pure linear PS showed the stars spread more, occupying greater areas. Among the stars, the PEO-core stars were more compact while the PS-core stars spread more. The influence of architecture in terms of the core/corona polymers and branching were also examined. The effects of architecture were subtle, proving less important than PEO chain length or mass percentage.  相似文献   

9.
The effects of the addition of random copolymers of poly(styrene-co-methacrylic acid) [P(S-co-MAA)] on the self-assembly of block copolymers of poly(styrene-b-acrylic acid) (PS-b-PAA) are described. The effects of variation of five factors, including the MAA content, the weight fraction and molar mass of the P(S-co-MAA), the initial concentration of the mixture, and the length of the PAA segment in the block copolymer, were investigated. With increasing MAA content, the localization of the random copolymer in the aggregate changed from the core to the interface, which led to a morphological transition from spheres to vesicles. Vesicles, mixtures of vesicles and large spheres, and large spheres alone were formed with increasing weight fraction of the random copolymer. When the molar mass of the random copolymer was high, both rods and vesicles were observed at low water contents; otherwise, only vesicles were observed. The vesicle size increased (from 100 to 140 nm) with increasing initial polymer concentration, whereas the vesicle membrane thickness remained constant. The size of the vesicles prepared from the mixtures increased with water content but decreased with the length of PAA in the diblock.  相似文献   

10.
A surfactant ion-pair complex, [Ru(bpy)(2)L][Eu(NTA)(4)](2) (in which L = 1-docosyl-2-(2- pyridyl)benzimidazole, bpy = 2,2'-bipyridine, and NTA = 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionato) has been synthesized. The surface pressure-area isotherm measurements show that the complex forms a stable Langmuir film at the air-water interface without adding any electrolytes into the subphase. The monolayers formed at the surface pressures of 5 mN m(-1) and 20 mN m(-1), have been successfully transferred onto glass and quartz substrates with the transfer ratios close to unity. The Langmuir-Blodgett films were studied by UV-visible, infrared, and emission spectroscopies, atomic force microscopy, and cyclic voltammetry. The optical, redox, and morphology properties of the LB films were found to be significantly affected by the target surface pressures used for the film depositions.  相似文献   

11.
Microcin J25 forms stable monolayers at the air-water interface showing a collapse at a surface pressure of 5 mN/m, 220 mV of surface potential, and 6 fV per squared centimeter of surface potential per unit of molecular surface density. The adsorption of microcin J25 from the subphase at clean interfaces leads to a rise of 10 mN/m in surface pressure and a surface potential of 220 mV. From these data microcin appears to be a poor surfactant per se. Nevertheless, the interaction with the lipid monolayer further increase the stability of the peptide at the interface depending on the mode in which the monolayer is formed. Spreading with egg PC leads to nonideal mixing up to 7 mN/m, with hyperpolarization and expansion of components at the interface, with a small excess free energy of mixing caused by favorable contributions to entropy due to molecular area expansion compensating for the unfavorable enthalpy changes arising from repulsive dipolar interactions. Above 7 mN/m microcin is squeezed out, leaving a film of pure phospholipid. Nevertheless, the presence of lipid at 10 and 20 mN/m stabilize further microcin at the interface and adsorption from the subphase proceeds up to 30 mN/m, equivalent to surface pressure in bilayers.  相似文献   

12.
钱浩  徐华明  黄胜梅 《应用化学》2007,24(9):1027-1031
通过沉淀聚合方法,利用自由基共聚制备了苯乙烯-顺丁烯二酸酐共聚物(SMA),利用SOCl2的酰氯反应,在SMA大分子链上接枝聚乙二醇侧链,制备了聚苯乙烯-g-聚乙二醇(PEG-g-PS)的大分子表面改性剂。利用大分子表面改性剂在聚苯乙烯基体中具有选择性迁移扩散的特性,实现了对聚苯乙烯薄膜表面极性的改善作用。采用衰减全反射傅立叶变换红外光谱仪和表面静态接触角法检测了聚苯乙烯的表面极性。结果发现,PEG-g-PS上的聚醚链段可以有效的富集在聚合物表面,明显改善PS的表面极性和亲水性,表面极性可提高3倍,达到11.6mN/m。同时,大分子表面改性剂和聚苯乙烯基体间有一定的相容性,有效地克服了小分子表面改性剂容易流失,改性寿命较短的重要缺陷,使表面改性的持久性充分增加,实现对聚合物表面改性效果终生化的目的。而且大分子表面改性剂在极性溶剂的诱导作用下,可以实现进一步的迁移扩散,充分提高了聚苯乙烯的表面极性。  相似文献   

13.
The mechanism by which the unique toroidal supramolecular assemblies were formed for triblock copolymers of acrylic acid (AA), methyl acrylate (MA), and styrene (S), PAA99-b-PMA73-b-PS66, was probed in this study by investigating the influences of the block copolymer compositions and sequences. Two triblock copolymers, PAA99-b-PMA73-b-PS66 and PAA99-b-PS76-b-PMA62, and two diblock copolymers, PAA99-b-PMA155 and PAA99-b-PS133, were studied under experimental solution-state conditions that involved a range of solvent/nonsolvent (tetrahydrofuran/water) compositions, each in the presence of 2,2'-(ethylenedioxy)bis(ethylamine). The resulting morphologies were determined by transmission electron microscopy. The failures to afford toroidal supramolecular assemblies from both diblock copolymers having comparable lengths of the total hydrophobic chain segment, either entirely PMA or entirely PS, and from the triblock copolymer having a reversed connection sequence for the hydrophobic (PMA and PS) segments demonstrate the unique self-assembly behaviors of triblock copolymers and the importance of the block copolymer sequence.  相似文献   

14.
Poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA), two polymers known to form pH-sensitive aggregates through noncovalent interactions, were assembled in purposely designed architecture -a dendrimer-like PEO scaffold carrying short inner PAA chains-to produce unimolecular systems that exhibit pH responsiveness. Because of the particular placement of the PAA chains within the dendrimer-like structure, intermolecular complexation between acrylic acid (AA) and ethylene oxide (EO) units-and thus macroscopic aggregation or even mesoscopic micellization-could be avoided in favor of the sole intramolecular complexation. The sensitivity of such interactions to pH was exploited to generate dendrimer-like PEOs that reversibly shrink and expand with the pH. Such PAA-carrying dendrimer-like PEOs were synthesized in two main steps. First, a fifth-generation dendrimer-like PEO was obtained by combining anionic ring-opening polymerization (AROP) of ethylene oxide from a tris-hydroxylated core and selective branching reactions of PEO chain ends. To this end, an AB(2)C-type branching agent was designed: the latter includes a chloromethyl (A) group for its covalent attachment to the arm ends, two geminal hydroxyls (B(2)) protected in the form of a ketal ring for the growth of subsequent PEO generations by AROP, and a vinylic (C) double bonds for further functionalization of the interior of dendrimer-like PEOs. Reiteration of AROP and derivatization of PEO branches allowed us to prepare a dendrimer-like PEO of fourth generation with a total molar mass of 52,000 g x mol(-1), containing 24 external hydroxyl functions and 21 inner vinylic groups in the interior. A fifth generation of PEO chains was generated from this parent dendrimer-like PEO of fourth generation using a "conventional" AB(2)-type branching agent, and 48 PEO branches could be grown by AROP. The 48 outer hydroxy-end groups of the fifth-generation dendrimer-like PEO obtained were subsequently quantitatively converted into inert benzylic groups using benzyl bromide. The 21 internal vinylic groups carried by the PEO scaffold were then chemically modified in a two-step sequence into bromoester groups. The latter which are atom transfer radical polymerization (ATRP) initiating sites thus served to grow poly(tert-butylacrylate) chains. After a final step of hydrolysis of the tert-butyl ester groups, double, hydrophilic, dendrimer-like PEOs comprising 21 internal junction-attached poly(acrylic acid) (PAA) blocks could be obtained. Dynamic light scattering was used to determine the size of these dendrimer-like species in water and to investigate their response to pH variation: in particular, how the pH-sensitive complexation of EO and AA units affects their overall behavior.  相似文献   

15.
Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.  相似文献   

16.
Polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymers form micelles in toluene with PAA as the core and PS as the corona. The introduction of poly(methyl methacrylate)-b-poly(ethylene oxide) (PMMA-b-PEO) solution in toluene leads to mixed micelles due to the hydrogen-bonding complexation between PAA and PEO. By using a combination of static and dynamic laser light scattering, we have investigated the evolution of the mixed micelles. Our results revealed that the complexation between PAA and PEO in the core and the segregation between PS and PMMA in the corona as a function of the molar ratio (r) of PEO to PAA manipulate the evolution. At r < approximately 1.0, the mixed micelles hold a spherical structure after a long-time standing. However, at r > approximately 1.0, the average radius of gyration Rg, the average hydrodynamic radius , and the ratio / of the mixed micelles increase with time, whereas the molar mass (Mw) does not change. The facts indicate that the mixed micelle has evolved from a spherical structure to a hyperbranched structure.  相似文献   

17.
Wear studies were performed on polystyrene (PS)-poly(acrylic acid) (PAA) mixed polymer brushes and corresponding monobrushes in a dried state. The aim was to study the wear mechanism in polymer brush surfaces as well as to investigate the effect of switching of PS + PAA binary brush surfaces (on treatment with the selective solvents for the PS and PAA) on the wear process. Wear experiments were carried out using atomic force microscopy (AFM) under a controlled environment. The wear experiments were performed as a function of scan number using a sharp silicon nitride tip to induce the wear on the sample surfaces. The wear mechanism on different brush surfaces was influenced by molecular entanglement as well as adhesion and friction on the sample surface. The wear process on the PS monobrush surface treated with toluene took place via formation of the ripples. On the other hand, a typical wear mode observed on the PAA monobrushes was removal of the polymeric material from the surface. For the mixed brush surface treated with toluene (selective solvent for PS) where PS chains dominated the top of the sample surface, the typical wear mode observed was ripple formation similar to that observed for the PS monobrushes. However, when a mixed brush was treated with ethanol and pH 10 water so that PAA chains dominated the top layer, wear occurred via removal of material. The amount of wear on the surfaces increased with the number of scans. Furthermore, the load and scan velocity dependence of the wear process was also investigated. Wear on polymer brush surfaces increased on increasing the load and/or decreasing the scan speed. The present study shows that wear can be controlled/tuned using mixed responsive brushes.  相似文献   

18.
Asymmetrically substituted poly(paraphenylene) (PhPPP) with hydrophilic and hydrophobic side chains was investigated. The polymer behavior at the air-water interface was studied on the basis of surface pressure-area (pi-A) isotherms and compression/expansion hysteresis measurements. PhPPP can form stable monolayers with an area per repeat unit of A=0.20+/-0.02 nm2 and a collapse pressure in the range of pi=25 mN/m. Then, Langmuir-Blodgett-Kuhn (LBK) films of PhPPP were prepared by horizontally and vertically transferring the Langmuir monolayers onto hydrophilic solid substrates at pi=12 mN/m. Cross-section analysis of the AFM tapping-mode topography images of a single transferred monolayer reveals a thickness of d0=0.9+/-0.1 nm. Taking into account the obtained monolayer thickness, curve-fitting calculations of angular scan data of LB monolayers measured using surface plasmon resonance (SPR) spectroscopy lead to a value for the refractive index of n=1.78+/-0.02 at lambda=632.8 nm. Next, the spontaneous formation of a PhPPP monolayer by adsorption from solution was studied ex situ by atomic force microscopy and UV-vis spectroscopy and in situ by using SPR spectroscopy. Stable self-assembled monolayers of PhPPP can be formed on hydrophilic surfaces with a thickness similar to that of the monolayer obtained using the LB method. The characterization results confirmed the amphiphilic character and the self-assembly properties of PhPPP, as well as the possibility of preparing homogeneous monolayer and multilayer films.  相似文献   

19.
Polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer chains form aggregates with bimodal distribution in toluene. The introduction of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) chains leads to the formation of mixed micellar cluster due to the hydrogen-bonding complexation between PAA and PEO. By using laser light scattering and transmission electron microscopy, we have investigated the structural evolution of the mixed micellar cluster. As the standing time increases, the cluster split into regular complex micelles composed of PS-b-PAA and PS-b-PEO chains. Our results reveal that the hydrogen-bonding complexation between PAA and PEO in the core and the repulsion between PS chains in the corona as a function of the molar ratio (r) of PEO to PAA manipulate the evolution.  相似文献   

20.
We study the surface behavior of the asymmetric amphiphilic heteroarm poly(ethylene oxide) (PEO)/polystyrene (PS) star polymer on solid substrate. These star polymers differ in both architecture (four- and three-arm molecules, PEO-b-PS(3) and PEO-b-PS(2)) and in the length of PS chains (molecular weight from about 10 000 up to 24 000). We observed that, for a given chemical composition with a predominant content of hydrophobic blocks, the compression behavior of the PS domain structure controls the surface behavior and the final morphology of the monolayers. New features of the surface behavior of star-block copolymers are high stretching of the PS arms from the interface and enhanced stability of the circular PS domain structure, even at high compression. We suggest that for asymmetric star-block copolymers both architecture and chemical composition heavily favor the formation of highly curved interfaces and, thus, more stable circular domain structure with stretched PS arms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号