首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Retinol nanoparticles have been obtained by direct precipitation of retinol in the inner water cores of AOT/heptane/water microemulsions. The retinol dissolved in chloroform was injected into the microemulsion. The diameter of the so-obtained nanoparticles was measured using transmission electron microscope pictures where the revelation was made thanks to adsorbed iodine on the nanoparticles. The size is ca 6.0 nm, and it is not dependent either on the size of the water droplets or the concentration of the retinol molecules. This phenomenon is explained by the thermodynamic stabilization of the nanoparticles at a certain size. UV-visible spectra of the nanoparticles show a new band the maximum of which has a bathochromic shift with respect to the absorption band of the retinol monomers. If the bathochromic shift is plotted as a function of the line width, a linear correlation is obtained, the line width is decreasing with increasing shift. This behavior is interpreted as being due to an excitonic transition of a J-complex. Quantum chemical calculations have been carried out to confirm the presence of J-complexes. Taking into account the various possible geometries, the results confirm the presence of J-complexes composed of three head-to-tail molecules on the average.  相似文献   

2.
Injectable hydrogel polymeric nanoparticles of polyvinylpyrrolidone cross-linked with N,N'-methylene bis-acrylamide and encapsulating water-soluble macromolecules such as FITC-dextran (FITC-Dx) have been prepared in the aqueous cores of reverse micellar droplets. These particles are 100 nm and below in diameter with a narrow size distribution. When dispersed in aqueous buffer these particles appear to be transparent and give an optically clear solution. Lyophilized powder of these nanoparticles is redispersable in aqueous buffer without any change in the size and morphology of the particles. The efficiency of FITC-Dx entrapment by these nanoparticles is high (>70%) and depends on the amount of cross-linking agent present in the polymeric material. The release of the entrapped molecules from these nanoparticles depends on the degree of cross-linking of the polymer, particle size, pH of the medium, and extent of loading, as well as temperature.  相似文献   

3.
W/O型微乳法制备淀粉基纳米粒   总被引:8,自引:0,他引:8  
在正己烷、Span-60和NaOH水溶液的W/O型淀粉微乳液中,进行淀粉与环氧氯丙烷交联反应制备淀粉微球,用质量分数为1%的淀粉水浆液制备出微球的流体力学半径Rb为7.08—113nm,其中粒径不超过100nm的纳米粒在整个微粒体系中占69%,平均粒径为92.2nm。TEM和DLS结果表明,制得的微粒呈圆球形,且微粒的流体力学半径随淀粉水浆液浓度的增加而增大并分布变宽,淀粉水浆液的浓度低有利于淀粉基纳米粒的形成。  相似文献   

4.
Surface modified ormosil nanoparticles   总被引:1,自引:0,他引:1  
Organically modified silanes (ORMOSIL) such as vinyl triethoxysilane readily aggregate in the aqueous cores of reverse micelles where the triethoxysilane moieties are hydrolyzed to form a hydrated silica network and the vinyl groups protruded out from the surface of the nanoparticles toward the hydrophobic side of the micellar interface. These particles are spherical and the size distribution of the particles is relatively narrow, with an average diameter of 87 nm. Surface vinyl silica nanoparticles so formed have been oxidized to surface carboxylic silica nanoparticles, followed by chemical conjugation with polyethyleneglycol amine (PEG amine) through the ethyl-3-(3-dimethylaminopropyl) (EDCI) carbodiimide reaction. The characteristic surface groups have been identified by Fourier transform infrared spectroscopy, while the size and the morphology of the particles have been studied by dynamic light scattering and transmission electron microscopy. It has been found that about 80-85% of the carboxylic groups are PEGylated during the EDCI reaction.  相似文献   

5.
We present a novel method for the preparation of ultrasmall Au/CdSe core/shell particles. Au-Cd bialloy particles of 4.7 nm diameter were prepared as the precursor. The Cd component in the precursor reacted with the Se source at a temperature of 205 degrees C and was heated to 250 degrees C, leading to formation of a Au/CdSe core/shell structure. The sizes of Au/CdSe nanoparticles have a narrow distribution with an average size of 6.0 nm and Au core of 2.2 nm diameter. The X-ray diffraction pattern and the images of the high-resolution electron transmission microscopy show that the Au cores and the CdSe shells of Au/CdSe core/shell nanoparticles are both well crystallized, and the CdSe shells are in a cubic phase. The absorption spectrum of the Au/CdSe nanoparticles combines the absorption behaviors of the Au cores and the CdSe shells.  相似文献   

6.
Distribution constants and standard enthalpies of transfer of cholesterol, retinol and retinal partitioned between n-heptane and water containing reversed sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micelles as a function of the molar concentration ratio (R=[water]/[AOT]) were evaluated by a calorimetric method. The results indicate that, in spite of the bulky hydrocarbon radical, these solubilizates behave like alcohols with a short alkyl chain. Moreover, cholesterol is always solubilized in the palisade layer of the reversed micelles whereas retinol and retinal are preferentially solubilized in the aqueous pseudophase. The influence of the enthalpic and the entropic contributions to the transfer of the solubilizates from n-heptane to reversed AOT micelles are also considered.  相似文献   

7.
金纳米粒子的阳光光化学合成和晶种媒介生长   总被引:3,自引:1,他引:3  
在柠檬酸盐-HAuCl4溶液体系中, 于高原太阳紫外线辐射下光化学合成了分散良好、尺寸分布窄的胶体金纳米粒子. 研究了溶液的酸度和太阳辐射条件对Au(Ⅲ)离子光化学还原反应速率和形成金纳米粒子尺寸的影响; 采用晶种媒介生长技术, 通过改变Au(0)/Au(Ⅲ)比合成了平均直径为4.9~9.7 nm的球形金粒子. 根据紫外-可见吸收光谱和透射电子显微镜的表征和分析, 讨论了光化学反应中自由基反应、金纳米粒子成核和生长机理.  相似文献   

8.
Based on the studies of their physical properties such as aqueous solution uptake, electric conductivity, and microstructure, CTAB/hexanol/water reverse micelles (CTAB, cetyltrimethyl ammonium bromide) were used to prepare ZrO2-Y2O3 nanoparticles. The relationship between the micelle microstructure and size, morphology, and aggregate properties of particles prepared was also investigated. It has been found that with high CTAB concentration ([CTAB] > 0.8 mol/l), the reverse micelles can solubilize a sufficient amount of aqueous solution with high metallic ion concentration ( approximately 1.0 mol/L), while the microstructure of the reverse micelles keeps unchanged. The most important factor affecting the size and shape of reverse micelles was found to be the water content w0 (w0, molar ratio of water to surfactant used). When both the CTAB concentration and the w0 values are low, the diameters of reverse micelles are below 20 nm, and the ZrO2-Y2O3 particles prepared are also very small. However, the powders obtained were found to form a lot of aggregates after drying and calcination. High CTAB concentration, high w0 value, and high metallic ion concentration in the aqueous phase for high powder productivity were found to be the suitable compositions of reverse micelles for preparing high-quality ZrO2-Y2O3 nanoparticles. Under these conditions, the reverse micelles are still spherical in shape even the reverse micellar system is nearly saturated with aqueous solutions. These reverse micelles were found to have a diameter of between 60 and 150 nm and the ZrO2-Y2O3 particles prepared therefrom range from 30 to 70 nm with spherical shape and not easy to form aggregates. Copyright 1999 Academic Press.  相似文献   

9.
Abstract—Iron nanoparticles are obtained by reducing iron(III) chloride with sodium borohydride in aqueous solutions at room temperature without using stabilizing agents. The obtained samples are characterized by X-ray diffraction analysis, low-temperature adsorption of argon, and transmission electron microscopy. The effect of the concentration of reagent solutions, the molar ratio of reagents, and exposure to ultrasound and inert atmosphere (Ar) on the size and composition of the resulting particles is found. Depending on the conditions of borohydride reduction of iron salts in an aqueous solution, both agglomerates of iron nanoparticles (5–50 nm) of 200 nm or larger and individual iron nanoparticles of 1 to 20 nm in size can be obtained. The presence and concentration of wustite and magnetite in the composition of the obtained particles mainly depend on the concentration of the reducing agent.  相似文献   

10.
In this study, a novel and exceedingly simple method for the aqueous synthesis of stable, unagglomerated polypyrrole nanospheres was investigated. The method is template- and surfactant-free and uses only pyrrole monomer, water, and ozone. When the monomer concentration, exposure time to ozone, and temperature were varied, it was determined that the temperature was the critical factor controlling the particle size through particle size measurements via dynamic light scattering and transmission electron microscopy (TEM). From the particle size measurements, a particle size distribution with a number-weighted mean diameter of 73 nm and a standard deviation of 18 nm was achieved. The particles were also investigated using ζ-potential measurements, ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis in an effort to determine the identity of the nanoparticles as well as the mechanism by which the nanoparticles are formed and stabilized.  相似文献   

11.
The usefulness of the hybrid materials of nanoparticles and biological molecules on many occasions depends on how well one can achieve a rational design based on specific binding and programmable assembly. Nonspecific binding between nanoparticles and biomolecules is one of the major barriers for achieving their utilities in a biological system. In this paper, we demonstrate a new approach to eliminate nonspecific interactions between nanoparticles and biological molecules by shielding the nanoparticle with a monolayer of ethylene glycol. A direct synthesis of di-, tri-, and tetra(ethylene glycol)-protected gold nanoparticles (Au-S-EGn, n = 2, 3, and 4) was achieved under the condition that the water content was optimized in the range of 9-18% in the reaction mixture. With controlled ratio of [HAuCl4]/[EGn-SH] at 2, the synthesized particles have an average diameter of 3.5 nm and a surface plasma resonance band around 510 nm. Their surface structures were confirmed by 1H NMR spectra. These gold nanoparticles are bonded with a uniform monolayer with defined lengths of 0.8, 1.2, and 1.6 nm for Au-S-EG2, Au-S-EG3, and Au-S-EG4, respectively. They have great stabilities in aqueous solutions with a high concentration of electrolytes as well as in organic solvents. Thermogravimetric analysis revealed that the ethylene glycol monolayer coating is ca. 14% of the total nanoparticle weight. Biological binding tests by using ion-exchange chromatography and gel electrophoresis demonstrated that these Au-S-EGn (n = 2, 3, or 4) nanoparticles are free of any nonspecific bindings with various proteins, DNA, and RNA. These types of nanoparticles provide a fundamental starting material for designing hybrid materials composed of metallic nanoparticles and biomolecules.  相似文献   

12.
A one-step method for preparing cellulase-immobilized nanoparticles that consist of well-defined poly(methyl methacrylate) (PMMA) cores and cellulase shells has been developed. The core-shell nanoparticles are synthesized from a direct graft copolymerization of methyl methacrylate (MMA) from cellulase in an aqueous medium. Particle formation strongly depends on the surface nature of the cellulase (e.g., pH of reaction media) and MMA to cellulase weight ratio. Under optimized conditions, high MMA conversions (>90%) were achieved, and the PMMA-cellulase nanoparticles produced were very stable with narrow size distributions ( Dv/Dn < 1.20). Particle sizes in the range between 80 and 124 nm (volume average diameter) could be tailored by a variation of cellulase concentration. Transmission electron microscopy micrographs revealed that the nanoparticle had a well-defined PMMA core which was evenly coated with cellulase shell. Study of cellulase activity of the PMMA-cellulase nanoparticles indicated that even though activity of immobilized cellulase on the nanoparticles was 41% less than that of the native cellulase after the polymerization, the immobilized cellulase showed improved properties such as broader working pH range and better thermal stability. Other important advantages of this approach include that the PMMA-cellulase nanoparticles could be produced in high concentrations (up to 18% w/w solids content) and the nanoparticles have thick and evenly distributed enzyme shells. Thus, this method may provide a new commercially viable route to the immobilization of thermally stable enzyme to form nanoenzyme particles.  相似文献   

13.
Chemical dealloying of Pt binary alloy precursors has emerged as a novel and important preparation process for highly active fuel cell catalysts. Dealloying is a selective (electro)chemical leaching of a less noble metal M from a M rich Pt alloy precursor material and has been a familiar subject of macroscale corrosion technology for decades. The atomic processes occurring during the dealloying of nanoscale materials, however, are virtually unexplored and hence poorly understood. Here, we have investigated how the morphology and intraparticle composition depend on the particle size of dealloyed Pt-Co and Pt-Cu alloy nanoparticle precursor catalysts. To examine the size-morphology-composition relation, we used a combination of high-resolutionscanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), electron energy loss (EEL) spectroscopy, energy-dispersive X-ray spectroscopy (EDS), and surface-sensitive cycling voltammetry. Our results indicate the existence of three distinctly different size-dependent morphology regimes in dealloyed Pt-Co and Pt-Cu particle ensembles: (i) The arrangement of Pt shell surrounding a single alloy core ("single core-shell nanoparticles") is exclusively formed by dealloying of particles below a characteristic diameter d(multiple cores) of 10-15 nm. (ii) Above d(multiple cores), nonporous bimetallic core-shell particles dominate and show structures with irregular shaped multiple Co/Cu rich cores ("multiple cores-shell nanoparticles"). (iii) Above the second characteristic diameter d(pores) of about 30 nm, the dealloyed Pt-Co and Pt-Cu particles start to show surface pits and nanoscale pores next to multiple Co/Cu rich cores. This structure prevails up to macroscopic bulklike dealloyed particles with diameter of more than 100 nm. The size-morphology-composition relationships link the nano to the macro scale and provide an insight into the existing material gap of dealloyed nanoparticles and highly porous bulklike bimetallic particles in corrosion science.  相似文献   

14.
Platinum nanoparticles prepared in reverse micelles have been used as catalysts for the electron transfer reaction between hexacyanoferrate(III) and thiosulfate ions. Nanoparticles of average diameter ranging between 10 and 80 nm have been used as catalysts. The kinetic study of the catalytic reaction showed that for a fixed mass of catalyst the catalytic rate did not increase proportionately to the decrease in particle size over the whole range from 10 to 80 nm. The maximum reaction rate has been observed for average particle diameter of about 38 nm. Particles below diameter 38 nm exhibit a trend of decreasing reaction rate with the decrease in particle size, while those above diameter 38 nm show a steady decline of reaction rate with increasing size. It has been postulated that in the case of particles of average size less than 38 nm diameter, a downward shift of Fermi level with a consequent increase of band gap energy takes place. As a result, the particles require more energy to pump electrons to the adsorbed ions for the electron transfer reaction. This leads to a reduced reaction rate catalyzed by smaller particles. On the other hand, for nanoparticles above diameter 38 nm, the change of Fermi level is not appreciable. These particles exhibit less surface area for adsorption as the particle size is increased. As a result, the catalytic efficiency of the particles is also decreased with increased particle size. The activation energies for the reaction catalyzed by platinum nanoparticles of diameters 12 and 30 nm are about 18 and 4.8 kJ/mol, respectively, indicating that the catalytic efficiency of 12-nm-diameter platinum particles is less than that of particles of diameter 30 nm. Extremely slow reaction rate of uncatalyzed reaction has been manifested through a larger activation energy of about 40 kJ/mol for the reaction.  相似文献   

15.
液晶模板法制备Au纳米线   总被引:12,自引:0,他引:12  
利用非离子表面活性剂C12E4的层状液晶作为模板,以氯金酸(HAuCl4)水溶液作为体系的水相和反应物,并利用C12E4中EO基团的还原性制备了Au的纳米线.研究表明,反应物的浓度、液晶体系的组成和反应时间都将影响产物的形貌.在适当条件下,可以得到直径约为20nm,长度达到几微米的均匀金纳米线,并探讨了纳米线形成过程中层状液晶的模板作用.  相似文献   

16.
Nanoparticles are expected to be applicable to inhalation as carrier but there exist disadvantages because of their size. Their deposition dose to the lung will be small. To overcome this problem and utilize nanoparticles for inhalation, we have prepared nanocomposite particles as drug carriers targeting lungs. The nanocomposite particles are prepared as drug-loaded nanoparticles–additive complex to reach deep in the lungs and to be decomposed into nanoparticles when they deposit into lung. In this study, we examined the effect of preparation condition – inlet temperature, size of primary nanoparticles and weight ratio of primary nanoparticles – on the property of nanocomposite particles.

When the size of primary nanoparticles was 400 nm and inlet temperature was 90 °C, only the nanocomposite particles containing between 45 and 55% of primary nanoparticles could be decomposed into nanoparticles in water. On the other hand, when the inlet temperature was 80 °C, nanocomposite particles were decomposed into nanoparticles independent of the weight ratio of primary nanoparticles. Also, the aerodynamic diameter of the nanocomposite particles was between 1.5 and 2.5 μm, independent of the weight ratio of primary nanoparticles.

When the size of primary nanoparticles was 200 nm and inlet temperature was 70 °C, nanocomposite particles were decomposed into nanoparticles independent of the weight ratio of primary nanoparticles. Also, the aerodynamic diameters of them were almost 2.0 μm independent of the weight ratio of primary nanoparticles. When the nanocomposite particles containing nanoparticles with the size of 200 nm are prepared at 80 °C, no decomposition into nanoparticles was observed in water.

Fine particle values, FPF, of the nanocomposite particles were not affected by the weight ratio of primary nanoparticles when they were prepared at optimum inlet temperature.  相似文献   


17.
Sudeshna Sawoo 《Tetrahedron》2009,65(22):4367-4374
Catalytically active Pd nanoparticles have been synthesized in water by a novel reduction of Pd(II) with a Fischer carbene complex where polyethylene glycol (PEG) was used as stabilizer. PEG molecules wrap around the nanoparticles to impart stability and prevent agglomeration, yet leave enough surface area available on the nanoparticle for catalytic activity. Our method is superior to others in terms of rapid generation and stabilization of Pd nanoparticles in water with a cheap, readily available PEG stabilizer. The size of the nanoparticles generated can be controlled by the concentration of PEG in water medium. The size decreased with the increase in the PEG: Pd ratio. This aqueous nano-sized Pd is a highly efficient catalyst for Suzuki, Heck, Sonogashira, and Stille reaction. Water is used as the only solvent for the coupling reactions.  相似文献   

18.
In this work, we exhibited the results of the green synthesis of gold nanoparticles by aqueous extract of Schinus molle L. leaves. The chemical reaction was carried out by varying the plant extract/precursor salt ratio concentration in the aqueous solution. The structural characterization of the nanoparticles was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD analysis showed that the as-synthesized AuNPs have a face-centered cubic structure. SEM and TEM observations indicated that most of the obtained particles have multiple twinning structures (MTP). The synthesized Au-MTP have particle sizes in the range of 10–60 nm, most of them with an average size of about 24 nm. However, triangular Au plate particles were also obtained, having an average size of 180 nm. Fourier transforms infrared spectroscopy and shows that the functional groups responsible for the chemical reduction of AuNPs are phenolic compounds present in the S. molle L. leaf.  相似文献   

19.
Extinction coefficients of gold nanoparticles with core size ranging from approximately 4 to 40 nm were determined by high resolution transmission electron microscopy analysis and UV-vis absorption spectroscopic measurement. Three different types of gold nanoparticles were prepared and studied: citrate-stabilized nanoparticles in five different sizes; oleylamide-protected gold nanoparticles with a core diameter of 8 nm, and a decanethiol-protected nanoparticle with a diameter of around 4 nm. A linear relationship between the logarithms of extinction coefficients and core diameters of gold particles was found independent of the capping ligands on the particle surface and the solvents used to dissolve the nanoparticles. This linear relation may be used as a calibration curve to determine the concentration or average size of an unknown nanoparticle or nanoparticle-biomolecule conjugate sample.  相似文献   

20.
合成了Co@SiO2核壳式纳米粒子,并采用透射电镜(TEM)、X射线衍射(XRD)、扫描电镜(SEM)和振动样品磁强计(VSM)对其形状、尺寸、荧光及磁特性进行了表征,探讨了其在细胞分离和细胞芯片上的应用和原理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号