首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes the construction of a phase-stable two dimensional electronic spectrometer operating in a photon echo mode with optical heterodyne detection, where the diffractive optics were used to realize the passive phase stabilization. In addition, a high speed and sensitive EMCCD was configured for shot-to-shot measurement which effectively improved signal-to-noise ratio. Consequently, the phase stability between a pulse pair split by the diffractive optics was determined in terms of standard deviation to be λ/200 during an observation period of 30 min, while the phase stability of the photon echo signal measured with IR140 is λ/90 in 19 min. In addition, a method of phase-shift in the pump pulse is also presented, which can effectively remove the interference from scattering light in collection of pump-probe transient absorption spectrum. The phase-shift method can improve the accuracy of phase adjustment in 2D electronic spectrum of scattering samples.  相似文献   

2.
15N T(2)' relaxation times of bacteriorhodopsin (BR) amide nitrogens were determined in the temperature range from 40 to -60 degrees C using a Hahn echo pulse sequence and proton decoupling during the echo and detection times. Using oriented membrane samples, with their bilayer normal parallel to the external magnetic field, the (15)N amide nitrogens belonging to the transmembrane helices could be selected for the analysis. The experiments were performed on purple membrane fragments (in which BR is organized in a 2D crystalline network) and on BR reconstituted into dimyristoylphosphatidylcholine at a 1:150 molar ratio (in which BR is in a freely diffusing monomeric state at 40 degrees C and in an aggregated state at 4 degrees C and below). The results are discussed in terms of helix dynamics, mosaic spread and resolution of the (15)N spectra for the various samples and experimental conditions.  相似文献   

3.
This review discusses the application of pulse EPR to the characterization of disordered systems, with an emphasis on samples containing transition metals. Electron nuclear double‐resonance (ENDOR), electron‐spin‐echo envelope‐modulation (ESEEM), and double electron–electron resonance (DEER) methodologies are outlined. The theory of field modulation is outlined, and its application is illustrated with DEER experiments. The simulation of powder spectra in EPR is discussed, and strategies for optimization are given. The implementation of this armory of techniques is demonstrated on a rich variety of chemical systems: several porphyrin derivatives that are found in proteins and used as model systems, otherwise highly reactive aminyl radicals stabilized with electron‐rich transition metals, and nitroxide–copper–nitroxide clusters. These examples show that multi‐frequency continuous‐wave (CW) and pulse EPR provides detailed information about disordered systems.  相似文献   

4.
We present a novel NMR approach to the determination of crosslink densities in rubber materials. The method is based on the dipolar correlation effect (DCE) on the stimulated echo examined in a series of rubber samples and linear polyisoprene. The parameter evaluated from the echo attenuation curves is the mean‐squared dipolar fluctuation associated with anisotropic reorientations of macromolecular backbones. The contributions to the DCE of the constraints due to excluded volume effects and chemical crosslinks are estimated. A strong dependence of the mean‐squared dipolar fluctuation on the crosslink density of rubber combined with the simplicity of performing the measurements with inexpensive low‐field instruments suggests that the DCE is a useful tool for routine applications. The potential and problems of performing DCE measurements in low‐magnetic‐field conditions are discussed in detail. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2207–2216, 2001  相似文献   

5.
An approach to pulse electron paramagnetic resonance (EPR) experiments which are based on two different resonance fields is introduced. Instead of using two microwave (mw) sources or a magnetic field jump, bichromatic pulses consisting of a transverse microwave field with frequency omega(mw) and a longitudinal radio frequency field with frequency omega(rf) are employed. Such bichromatic pulses excite a number of multiple photon transitions at frequencies omega(mw)+komega(rf) (k in Z). The pi-photon-induced transparency phenomenon is used to select the required transitions. This approach is used in the stimulated soft electron spin echo envelope modulation and the four-pulse double electron-electron resonance experiments. The results obtained using the bichromatic pulse approach are in agreement with those obtained with the standard pulse EPR techniques. It is shown that applying bichromatic pulses is straightforward and advantageous in several respects.  相似文献   

6.
对脉冲梯度场-核磁共振(PFG-NMR)中测定溶液分子自扩散系数的Stimulated echo方法进行了改进,把测定自扩散系数的Stimulated echo脉冲序列与测定自旋-晶格弛豫时间的脉冲序列串接起来,设计了两个新的脉冲序列。  相似文献   

7.
Picosecond tri-level photon echoes are generated among vibronic transitions of pentacene doped into a naphthalene host. The echoes are generated with three excitation pulses of which the first one, at ω1, always excites a vibronic transition in the pentacene molecule. With the second excitation pulse at ω2 and the third at ω1, a tri-transition echo (TTE) is formed. With the time ordering of the second and third pulse reversed, a connected two-color stimulated echo (C2CSE) is generated. It is shown that, for small pulse angles, the low-temperature decay, of both echo effects is identical and that a smooth transition of one echo effect into the other occurs at the overlap in time between the second and third excitation pulse. Observation of these echoes further indicates that the inhomogeneous broadening at the selected transitions is strongly correlated.  相似文献   

8.
1H time domain nuclear magnetic resonance (1H TD-NMR) at a low magnetic field becomes a powerful technique for the structure and dynamics characterization of soft organic materials. This relies mostly on the method sensitivity to the 1H-1H magnetic dipolar couplings, which depend on the molecular orientation with respect to the applied magnetic field. On the other hand, the good sensitivity of the 1H detection makes it possible to monitor real time processes that modify the dipolar coupling as a result of changes in the molecular mobility. In this regard, the so-called dipolar echoes technique can increase the sensitivity and accuracy of the real-time monitoring. In this article we evaluate the performance of commonly used 1H TD-NMR dipolar echo methods for probing polymerization reactions. As a proof of principle, we monitor the cure of a commercial epoxy resin, using techniques such as mixed-Magic Sandwich Echo (MSE), Rhim Kessemeier—Radiofrequency Optimized Solid Echo (RK-ROSE) and Dipolar Filtered Magic Sandwich Echo (DF-MSE). Applying a reaction kinetic model that supposes simultaneous autocatalytic and noncatalytic reaction pathways, we show the analysis to obtain the rate and activation energy for the epoxy curing reaction using the NMR data. The results obtained using the different NMR methods are in good agreement among them and also results reported in the literature for similar samples. This demonstrates that any of these dipolar echo pulse sequences can be efficiently used for monitoring and characterizing this type of reaction. Nonetheless, the DF-MSE method showed intrinsic advantages, such as easier data handling and processing, and seems to be the method of choice for monitoring this type of reaction. In general, the procedure is suitable for characterizing reactions involving the formation of solid products from liquid reagents, with some adaptations concerning the reaction model.  相似文献   

9.
Optimal control theory is used to design a laser pulse for the multiphoton dissociation of the Fe-CO bond in the CO-heme compounds. The study uses a hexacoordinated iron-porphyrin-imidazole-CO complex in its ground electronic state as a model for CO liganded to the heme group. The potential energy and dipole moment surfaces for the interaction of the CO ligand with the heme group are calculated using density functional theory. Optimal control theory, combined with a time-dependent quantum dynamical treatment of the laser-molecule interaction, is then used to design a laser pulse capable of efficiently dissociating the CO-heme complex model. The genetic algorithm method is used within the mathematical framework of optimal control theory to perform the optimization process. This method provides good control over the parameters of the laser pulse, allowing optimized pulses with simple time and frequency structures to be designed. The dependence of photodissociation yield on the choice of initial vibrational state and of initial laser field parameters is also investigated. The current work uses a reduced dimensionality model in which only the Fe-C and C-O stretching coordinates are explicitly taken into account in the time-dependent quantum dynamical calculations. The limitations arising from this are discussed in Sec. IV.  相似文献   

10.
The acquisition of ideal powder line shapes remains a recurring challenge in solid-state wideline nuclear magnetic resonance (NMR). Certain species, particularly quadrupolar spins in sites associated with large electric field gradients, are difficult to excite uniformly and with good efficiencies. This paper discusses some of the opportunities that arise upon departing from standard spin-echo excitation approaches and switching to echo sequences that use low-power, frequency-swept radio frequency (rf) pulses instead. The reduced powers demanded by such swept rf fields allow one to excite spins in different crystallites efficiently and with orientation-independent pulse angles, while the large bandwidths of interest that are needed by the measurement can be covered, thanks to the use of broadband frequency sweeps. The fact that the spins' evolution and ensuing dephasing starts at the beginning of such rf manipulation calls for the use of spin-echo sequences; a number of alternatives capable of providing the desired line shapes both in the frequency and in the time domains are introduced and experimentally demonstrated. Sensitivity- and lineshape-wise these experiments are competitive vis-a-vis current implementations of wideline quadrupolar NMR based on hard rf pulses; additional opportunities that may derive from these ideas are also briefly discussed.  相似文献   

11.
Peak distortion caused by homonuclear 1H J‐coupling is a major problem in many spin‐echo‐based experiments such as pulsed gradient spin‐echo (PGSE) experiments. Although peak phase distortions can be lessened by the incorporation of anti‐phase purging sequences, the sensitivity is substantially decreased. Techniques for lessening the effect of homonuclear J‐coupling evolution in spin‐echo‐based experiments have been investigated. Two potentially useful candidates include a J‐compensated inversion sequence that is efficient over a wide range of J‐coupling values and a pulse sequence that refocuses homonuclear J‐evolution during the spin‐echo. The latter was found to work superbly on samples containing two spin (AX or AB) systems and still provided significant advantage over the standard method on samples containing more complicated spin systems. Implementation of this J‐refocusing technique into a PGSE‐type experiment (J‐PGSE) leads to dramatic improvement of spectra and easier data analysis. The J‐PGSE sequence should find applications in many diffusion studies where the PGSE‐type method is required and should be a viable alternative to PGSTE especially in dilute samples due to its enhanced sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonance spectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, φ(P), is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, φ(P), converts the φ(P) dimension into a Δp dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows "single-scan" measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse.  相似文献   

13.
In this article, the authors demonstrate a rapid NMR method to measure a full three-dimensional diffusion tensor. This method is based on a multiple modulation multiple echo sequence and utilizes static and pulsed magnetic field gradients to measure diffusion along multiple directions simultaneously. The pulse sequence was optimized using a well-known linear inversion metric (condition number) and successfully tested on both isotropic (water) and anisotropic (asparagus) diffusion systems.  相似文献   

14.
Time-domain nuclear magnetic resonance techniques are frequently used in polymer, pharmaceutical, and food industries as they offer rapid experimentation and generally do not require any considerable preliminary sample preparation. Detection of solid and liquid fractions in a sample is possible with the free induction decay (FID). However, for the classical FID sequence that consists of a single pulse followed by relaxation decay acquisition, the dead time of the probe (ring out of resonance circuitry) occurs and varies between 5 and 15 μs for standard 10-mm tubes. In such a case, there arises a risk that the signal from the solid fraction cannot be detected correctly. To obtain quantitative measurement on crystalline and more mobile amorphous fractions, alternative sequences to the classical FID in the solid-state nuclear magnetic resonance were developed. Solid echo and magic sandwich echo sequences perform the relaxation decay refocusing somehow excluding the dead time problem and allow detection of the signal from the solid fraction. In this study, knowledge of amorphous/crystal fraction, which is obtained through solid echo and magic sandwich echo, has been explored on powder sugar samples for the purpose of developing a groundwork for a reliable quality control method. Different sugars were examined for the utilization of the sequences. What is important to add and make this study unique is that the method proposed did not involve multiparameter fitting of the “bead” pattern FID signal that normally suffers from ambiguity; just the integration of the fast Fourier transform of the solid echo was needed to calculate the second moment, (M2).  相似文献   

15.
T.N. Rudakov   《Chemical physics letters》2005,410(4-6):365-369
This is a study of the influence of multi-pulse sequences consisting of blocks of short-repetition pulses on the nitrogen-14 NQR spin-system. The experiment demonstrated that the application of such sequences generates multiple rotary echo signals in the effective field of the pulse sequence similar to those generated by conventional spin-locking multi-pulse sequences. The detected RE signals were analysed and the obtained results presented, adding to the understanding of the dynamic properties of the quadrupolar spin-system. The experimental results are obtained for polycrystalline NaNO2.  相似文献   

16.
17.
High-resolution nuclear magnetic resonance spectra from samples located in inhomogeneous static and radio frequency magnetic fields can be obtained by applying a train of z-rotation radio frequency pulses to repeatedly refocus the inhomogeneous broadening during signal detection. z-rotation pulses based on an adiabatic double passage are effective over wide bandwidths using a limited amount of radio frequency power at the expense of being time consuming and, consequently, sensitive to motion of the spin bearing molecules. The signal damping resulting from molecular self-diffusion during the pulse was studied experimentally and using Brownian dynamics simulations. The results show that the analytical expression for diffusion damping during a double spin echo is a reasonable approximation for the signal decay during an adiabatic z-rotation pulse. Methods to alleviate the effects of diffusion are discussed.  相似文献   

18.
The two-frequency pulse response of a multilevel system in NQR is investigated. Additional spin echo signals are shown to appear. The application of the two-frequency spin echo method to some of the crystals is demonstrated. The method is of great value for the investigation of local fields in crystals.  相似文献   

19.
The use of dissolution dynamic nuclear polarization (D ‐DNP) offers substantially increased signals in liquid‐state NMR spectroscopy. A challenge in realizing this potential lies in the transfer of the hyperpolarized sample to the NMR detector without loss of hyperpolarization. Here, the use of a flow injection method using high‐pressure liquid leads to improved performance compared to the more common gas‐driven injection, by suppressing residual fluid motions during the NMR experiment while still achieving a short injection time. Apparent diffusion coefficients are determined from pulsed field gradient echo measurements, and are shown to fall below 1.5 times the value of a static sample within 0.8 s. Due to the single‐scan nature of D ‐DNP, pulsed field gradients are often the only choice for coherence selection or encoding, but their application requires stationary fluid. Sample delivery driven by a high‐pressure liquid will improve the applicability of these types of D‐DNP advanced experiments.  相似文献   

20.
We propose pulse sequences for Reaction Yield Detected Magnetic Resonance (RYDMR), which are based on refocusing the zero-quantum coherences in radical pairs by non-selective microwave pulses and using the population of a radical pair singlet spin state as an observable. The new experiments are analogues of existing EPR experiments such as the primary echo, Carr-Purcell, ESEEM, stimulated echo and Mims ENDOR. All pulse sequences are supported by analytical results and numerical calculations. The pulse sequences can be used for more efficient and highly detailed characterization of intermediates of chemical reactions and charge carriers in organic semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号