首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We develop rapid chemical-vapor sensors based on optofluidic ring resonators (OFRRs). The OFRR is a glass capillary whose circular wall supports the circulating waveguide modes (WGMs). The OFRR inner surface is coated with a vapor-sensitive polymer. The analyte and polymer interaction causes the polymer refractive index to change, which is detected as a WGM spectral shift. Owing to the excellent fluidics, the OFRR exhibits subsecond detection and recovery time with a flow rate of only 1 mL/min, a few orders of magnitude lower than that in the existing optical vapor sensors. The detection limit is estimated to be 5.6 x 10(-6) refractive index units, over ten times better than other ring-resonator vapor sensors. Ethanol and hexane vapors are used as a model system, and chemical differentiation is demonstrated with different polymer coatings.  相似文献   

2.
An optical manipulation system based on optofluidic microbubble resonators(MBR) is proposed. As the high-Q whispering gallery modes(WGMs) are excited in an MBR, the buildup of the field intensity inside the resonator is large enough to trap nanoscale particles. The optical gradient forces generated by the WGMs with different radial orders are investigated numerically. The negative effect of the resonance detuning induced by the particles is taken into account to investigate the optical gradient forces exerting on the particles. By the stability analysis, the WGMs with high radial orders show a better trapping stability under Brownian motion since most of the optical fields reside within the water core.  相似文献   

3.
Watkins A  Ward J  Wu Y  Chormaic SN 《Optics letters》2011,36(11):2113-2115
A single-input whispering gallery optical microbubble resonator is presented. Spherical microbubbles with diameters less than 100 μm, micrometer-sized wall thicknesses, and a single opening or input were fabricated by heating the tapered tip of a pressurized glass capillary using a CO(2) laser. Optical whispering gallery modes with Q factors of ~10(5) were obtained. The bubbles were filled with water and mode shifts of ~20 GHz were observed. Fano-type resonances were detected when the coupling optical fiber diameter was less than 1 μm, causing the microresonator to switch from being a band-stop filter to a bandpass filter. Larger bubbles with submicrometer wall thickness were also fabricated.  相似文献   

4.
刘彬斌  张蒙  吴根柱 《光子学报》2016,(11):167-172
利用有限元数值分析方法研究了椭球状石英毛细管微气泡回音壁模式特性及其折射率传感性能.计算分析了不同半径与内壁厚度情况下空芯和液芯椭球形微气泡模式特征,包括品质因数、有效折射率和能量比等,并探讨了微气泡在高灵敏度和高分辨率折射率传感方面的应用潜能.研究结果表明微气泡膨胀至350μm,且内壁厚度为1μm时分辨率和灵敏度最佳;在该厚度范围附近,微气泡分辨率不会因为半径尺寸的改变而发生太大变化;二阶径向模具有较高品质因数,其灵敏度略高于一阶基模,且使用二阶径向模可降低在制造时对结构壁厚控制精度的要求,可用于实际传感应用中.研究结果对微气泡的进一步实验研制具有理论参考价值.  相似文献   

5.
We present a novel design of optical microcavity where the optical energy resides primarily in free space and therefore is readily accessible to foreign objects such as atoms, molecules, mechanical resonators, etc. We describe the physics of these resonators and propose a design method based on stochastic optimization. Cavity designs with diffraction-limited mode volumes and quality factors in the range of 10(4)-10(6) are presented. With a purely planar geometry, the cavity can be easily integrated on-chip by using conventional micro- and nanofabrication processes.  相似文献   

6.
7.
Open resonators are studied based on the scattering theory. In particular, a theory of open resonators with a dielectric plate is constructed. This theory is used to develop a technique for measuring small dielectric loss. Measurements of the loss tangent in diamond plates show that the volume absorption in the best samples is ≈7×10?6 in the high-frequency part of the millimeter-wave range. A significant absorption in thin surface layers that is caused by surface treatment techniques (polishing, vacuum soldering, etc.) is revealed.  相似文献   

8.
Demonstration of chalcogenide glass racetrack microresonators   总被引:1,自引:0,他引:1  
We have demonstrated what we believe to be the first chalcogenide glass racetrack microresonator using a complementary metal-oxide semiconductor-compatible lift-off technique with thermally evaporated As(2)S(3) films. The device simultaneously features a small footprint of 0.012 mm x 0.012 mm, a cavity Q (quality factor) of 10,000, and an extinction ratio of 32 dB. These resonators exhibit a very high sensitivity to refractive index changes with a demonstrated detection capability of Dn(As(2)S(3)=(4.5 x 10(-6)+/-10%) refractive index unit. The resonators were applied to derive a photorefractive response of As(2)S(3) to lambda=550 nm light. The resonator devices are a versatile platform for both sensing and glass material property investigation.  相似文献   

9.
The focus of contrast-enhanced ultrasound research has developed beyond visualizing the blood pool and its flow to new areas such as perfusion imaging, drug and gene therapy, and targeted imaging. In this work comparison between the application of polymer- and phospholipid-shelled ultrasound contrast agents (UCAs) for characterization of the capillary microcirculation is reported. All experiments are carried out using a microtube as a vessel phantom. The first set of experiments evaluates the optimal concentration level where backscattered signal from microbubbles depends on concentration linearly. For the polymer-shelled UCAs the optimal concentration level is reached at a value of about 2 × 104 MB/ml, whereas for the phospholipid-shelled UCAs the optimal level is found at about 1 × 105 MB/ml.Despite the fact that the polymer shell occupies 30% of the radius of microbubble, compared to 0.2% of the phospholipid-shelled bubble, approximately 5-fold lower concentration of the polymer UCA is needed for investigation compared to phospholipid-shelled analogues. In the second set of experiments, destruction/replenishment method with varied time intervals ranging from 2 ms to 3 s between destructive and monitoring pulses is employed. The dependence of the peak-to-peak amplitude of backscattered wave versus pulse interval is fitted with an exponential function of the time γ = A(1 − exp(−βt)) where A represents capillary volume and the time constant β represents velocity of the flow. Taking into account that backscattered signal is linearly proportional to the microbubble concentration, for both types of the UCAs it is observed that capillary volume is linearly proportional to the concentration of the microbubbles, but the estimation of the flow velocity is not affected by the change of the concentration. Using the single capillary model, for the phospholipid-shelled UCA a delay of about 0.2-0.3 s in evaluation of the perfusion characteristics is found while polymer-shelled UCA provide response immediately. The latter at the concentration lower than 3.6 × 105 MB/ml have no statistically significant delay (< 0.01), do not cause any attenuation of the backscattered signal or saturation of the receiving part of the system. In conclusion, these results suggest that the novel polymer-shelled microbubbles have a potential to be used for perfusion evaluation.  相似文献   

10.
The results of an experimental study of disordered capillary ripples parametrically excited on a liquid surface in various types of resonators are presented. It is found that, in addition to spatio-temporal modulation of capillary ripples, excitation of large-scale motions (gravity waves) and intermittency of chaos, when regular and chaotic patterns alternate in time, are possible in certain supercriticality and liquid-depth ranges.Institute of Applied Physics, Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 36, No. 5, pp. 404–411, May, 1993.  相似文献   

11.
Here we show an innovative, simple and reliable method to fabricate micro‐lasers by self‐assembly of rod‐shaped nanocrystals. We use dot/rod core/shell CdSe/CdS nanorods to form optical micro‐resonators by exploiting their self‐organization into well‐defined coffee stain rings. The fabrication process merely consists of capillary jet deposition of a nanorod solution onto a glass substrate, and is scalable, economic, and highly reproducible. Upon optical pumping of the micro‐resonators we obtain laser emission in the red or in the blue‐green spectral region, demonstrating lasing both from core and shell transitions, with low pumping thresholds. Modeling by full‐wave numerical simulations according to generalized (i. e. scattering) formulation of laser theory demonstrates lasing from complex modes of the self‐assembled cavity.  相似文献   

12.
黄蓓  张艳丽  章东  龚秀芬 《中国物理 B》2010,19(5):54302-054302
This article proposes a finite element model (FEM) for predicting the acoustic scattering from an encapsulated microbubble near rigid boundary. The validity of the model is first examined by comparing the acoustic nonlinear response of a free microbubble with that obtained by the Church model. Then this model is used to investigate the effect of the rigid boundary on acoustic scattering signals from microbubble. The results indicate that the resonance frequency decreases while the oscillation amplitude increases as the microbubble approaches the rigid boundary. In addition, the fundamental component of the acoustic scattering signal is enhanced compared with that of the free microbubble.  相似文献   

13.
New EPR resonators were developed by using a ceramic material with a high dielectric constant, epsilon=160. The resonators have a high quality factor, Q=10(3), and enhance the sensitivity of an EPR spectrometer up to 170 times. Some advantages of the new ceramic resonators are: (1) cheaper synthesis and simplified fabricating technology; (2) wider temperature range; and (3) ease of use. The ceramic material is produced with a titanate of complex oxides of rare-earth and alkaline metals, and has a perovskite type structure. The resonators were tested with X-band EPR spectrometers with cylindrical (TE(011)) and rectangular (TE(102)) cavities at 300 and 77K. We discovered that EPR signal strength enhancement depends on the dielectric constant of the material, resonator geometry and the size of the sample. Also, an unusual resonant mode was found in the dielectric resonator-metallic cavity structure. In this mode, the directions of microwave magnetic fields of the coupled resonators are opposite and the resonant frequency of the structure is higher than the frequency of empty metallic cavity.  相似文献   

14.
We solve algebraically the equations of motion for a spherical antenna coupled to an arbitrary number of small resonators, free to move radially, and investigate the conditions under which damping forces can be neglected in the system. We show that in order that the antenna's modes be decoupled a preferred distribution of the resonators on its surface should be used. We find that either 5, 6, 10 or 16 resonators can be used as long as they are conveniently positioned on the antenna's surface. We calculate and analyse the frequency shift and the signal-to-noise ratio of the coupled system for the various distributions studied.  相似文献   

15.
The divergence of a long pulse, low gain XeCl excimer laser has been improved using confocal positive branch unstable resonators with variable reflectivity mirrors as outcouplers. With variable reflectivity unstable resonators, nearly diffraction limited beams are obtained. Variable reflectivity resonators lead to high brightness beams (9.1 10 W/(cm sr)). Different reflection profiles were studied with respect to their influence on the beam quality and the energy extraction.  相似文献   

16.
A quality factor exceeding 5x10(9) is obtained in whispering-gallery mode (WGM) resonators fabricated of crystalline quartz. We observe significant electrical tunability of WGMs in x-cut resonators and demonstrate an electro-optic modulator with a submegahertz passband at 12 GHz. We discuss other photonics applications of the crystal quartz WGM resonators in narrowband agile tunable filters, compact narrow linewidth lasers, and microwave and millimeter wave oscillators.  相似文献   

17.
P Ciuti  G Iernetti  M.S Sagoo 《Ultrasonics》1980,18(3):111-114
Non-linearity effects on sound propagation induced by cavitation bubbles are investigated. The convergence of an acoustic wave due to the interaction with the microbubbles produced in the cavitation zone is shown experimentally. In these conditions the theoretical analysis shows that the self-focusing primarily depends on the effective microbubble volume fraction. This fraction turns out to be about 10?6 with a corresponding self-focusing distance of about 9 cm in the Fraunhofer region of a plane circular transducer.  相似文献   

18.
李先枢  徐家进 《物理学报》1986,35(8):1087-1090
本文根据文献[1—3]对普通激光器用轴对称谐振腔中所有阶(实际上)横模进行了系列计算。计算的腔包括对称与非对称的、稳定与非稳定的。得到了673个菲涅耳数?≤5(个别的?=8,10)的腔中总共10,790个横模的所有重要性质。计算中还给出了所有横模在镜面上场分布的近似解析表示式。 关键词:  相似文献   

19.
We present a simple measurement and analysis technique to determine the fraction of optical loss due to both radiation (scattering) and linear absorption in microphotonic components. The method is generally applicable to optical materials in which both nonlinear and linear absorption are present and requires only limited knowledge of absolute optical power levels, material parameters, and the structure geometry. The technique is applied to high-quality-factor (Q=1x10(6) to Q=5x10(6)) silicon-on-insulator (SOI) microdisk resonators. It is determined that linear absorption can account for more than half of the total optical loss in the high-Q regime of these devices.  相似文献   

20.
与微米机械振子相比, 纳米机械振子使用纳米级材料制备, 尺寸更小, 质量更轻, 它作为探测器, 在探测力、质量等物理量时拥有更高的灵敏度. 石墨烯有高强度、 低密度等优良的机械特性, 被认为是制备纳米机械振子的理想材料. 基于其制备的石墨烯纳米机械振子有着高谐振频率、高品质因子和谐振频率可调性高等优势, 对于纳米力学的基础研究和应用都具有重要的意义. 本文利用微纳加工工艺(包括电子束曝光、 电子束蒸发镀膜、 反应离子刻蚀和微米级定点干法转移技术)制备了串联石墨烯纳米机械振子样品, 并在极低温下(10 mK) 测量了石墨烯机械振子的机械性质, 实现两个串联石墨烯纳米机械振子的强耦合, 耦合强度为1.34 MHz, 协同系数C = 399.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号