首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structural transformations in elementary metals under high pressures are considered using the Landau theory of phase transitions, in which the finite strain tensor components play the role of the order parameter. As an example, the phase transition in vanadium observed at a pressure of 69 GPa is analyzed. It is shown that it is a first-order elastic phase transition, which is close to a second-order transition.  相似文献   

2.
In the present paper we have investigated the high-pressure, structural phase transition of Barium chalcogenides (BaO, BaSe and BaTe) using a three-body interaction potential (MTBIP) approach, modified by incorporating covalency effects. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from TBIP show a reasonably good agreement with experimental data. Here, the transition pressure, NaCl-CsCl structure increases with decreasing cation-to-anion radii ratio. In addition, the elastic constants and their combinations with pressure are also reported. It is found that TBP incorporating a covalency effect may predict the phase transition pressure, the elastic constants and the pressure derivatives of other chalcogenides as well.   相似文献   

3.
In this article, we have investigated the high-pressure structural phase transition of alkaline earth oxides using the three-body potential (TBP) model. Phase transition pressures are associated with elastic constants. An effective inter-ionic interaction potential (TBP) with long-range Coulomb interactions and the Hafemeister–Flygare type short-range overlap repulsion and the vdWl interaction is developed. The present calculations have revealed reasonably good agreement with the available experimental data on structural transition (B1–B2 structure). The phase transition pressures Pt of MgO, CaO, SrO, and BaO occur at 220, 45, 40, and 100?GPa, respectively. Further, the variations of the second-order elastic constants with pressure have followed a systematic trend, which are almost identical to those exhibited by the observed data measured for other semiconducting compounds with rocksalt (B1)-type crystal structure. It is found that TBP promises that we would be able to predict phase transition pressure and elastic constants for other chalcogenides as well. The results may be useful for geophysical study.  相似文献   

4.
An effort has been made for obtaining the anharmonic properties of rocksalt structure solids starting from primary physical parameters viz. nearest-neighbor distance and hardness parameter assuming long- and short-range potentials at elevated temperatures. The elastic energy density for a deformed crystal can be expanded as power series of strains for obtaining coefficients of quadratic, cubic and quartic terms which are known as the second-, third- and fourth-order elastic constants, respectively. When the values of the higher-order elastic constants are known for a crystal, many of the anharmonic properties of the crystal can be treated within the limit of the continuum approximation in a quantitative manner. In this study, higher-order elastic constants are computed up to their melting temperature for rocksalt structure solids, which are alkali cyanides, sodium and potassium halides. The first order pressure derivatives of second- and third-order elastic constants, the second-order pressure derivatives of second-order elastic constants and partial contractions are also evaluated at different temperatures for these substances. The results thus obtained are compared with experimental data and found in well agreement with present values.  相似文献   

5.
牛兴平  孙兆楼 《计算物理》2017,34(4):468-474
利用基于密度泛函理论的第一性原理平面波赝势方法结合准谐德拜模型研究NaCl结构的CaS在高压下的弹性和热力学性质.计算得到的零温零压下的晶格常数、体弹模量与实验值符合得很好.弹性常数和弹性模量随着压强的增大而增大.压强对体弹模量和热膨胀系数的影响大于温度的影响.热容随压强的升高而降低,在高温下热容接近于Dulong-Petit极限.通过求解Gibbs自由能计算得到B1结构和B2结构CaS的相变压为36.61 GPa.  相似文献   

6.
The structural, elastic, and electronic properties of SrZrN2 under pressure up to 100?GPa have been carried out with first-principles calculations based on density functional theory. The calculated lattice parameters at 0?GPa and 0?K by using the GGA-PW91-ultrasoft method are in good agreement with the available experimental data and other previous theoretical calculations. The pressure dependence of the elastic constants and the elastic-dependent properties of SrZrN2, such as bulk modulus B, shear modulus G, Young's modulus E, Debye temperature Θ, shear and longitudinal wave velocity VS and VL, are also successfully obtained. It is found that all elastic constants increase monotonically with pressure. When the pressure increases up to 140?GPa, the obtained elastic constants do not satisfy the mechanical stability criteria and a phase transition might has occurred. Moreover, the anisotropy of the directional-dependent Young's modulus and the linear compressibility under different pressures are analysed for the first time. Finally, the pressure dependence of the total and partial densities of states and the bonding property of SrZrN2 are also investigated.  相似文献   

7.
The phase transition of ScSb and YSb from the NaCl-type (B1) structure to the CsCl-type (B2) structure is investigated by the ab initio plane-wave pseudopotential density functional theory method. It is found that the pressures for transition from the B1 structure to the B2 structure obtained from the equal enthalpies are 38.3 and 32.1 GPa for ScSb and YSb, respectively. From the variations of elastic constants with pressure, we find that the B1 phase of ScSb and YSb compounds are unstable when applied pressures are larger than 46.3 and 64.2 GPa, respectively. Moreover, the detailed volume changes during phase transition are analyzed.  相似文献   

8.
The isothermal and adiabatic nth-order (n ?? 2) elastic constants of a loaded crystal are defined. These constants fully determine the behavior of solids at an arbitrary load and are controlled by both an interatomic interaction and an applied load. Expressions that relate these constants (of the second, third, and fourth order) to Brugger elastic constants of the corresponding order, which are only determined by an inter-atomic interaction, are found for cubic symmetry crystals under hydrostatic pressure. These expressions are used to calculate the equation of state and the second- and third-order elastic constants of bcc tantalum at T = 0 K over a wide pressure range (0?C600 GPa) using an electron density functional method. The results of calculating the equation of state and the second-order elastic constants agree with available experimental data and the calculation results obtained in other works.  相似文献   

9.
By the particle-swarm optimization method, it is predicted that tetragonal P42mc, 141md, and orthorhombic Amm2 phases of vanadium nitride (VN) are energetically more stable than NaCl-type structure at 0 K. The enthalpies of the predicted three new VN phases, along with WC, NaC1, AsNi, CsCl type structures, are calculated each as a function of pressure. It is found that VN exhibits the WC-to-CsCl type phase transition at 256 GPa. For the considered seven crystal- lographic VN phases, the structures, elastic constants, bulk moduli, shear moduli, and Debye temperatures are investigated. Our calculated equilibrium structural parameters are in very good agreement with the available experimental results and the previous theoretical results for the NaC1 phase. The Debye temperatures of VN predicted three novel phases, which are all higher than those of the remaining structures. The elastic constants, thermodynamic properties, and elastic anisotropies of VN under pressure are obtained and the mechanical stabilities are analyzed in detail based on the mechanical stability criteria. Moreover, the effect of metallic bonding on the hardness of VN is also investigated, which shows that VNs in P42mc, 141md, and Amm2 phases are potential superhard phases. Further investigation on the experimental level is highly recommended to confirm our calculations presented in this paper.  相似文献   

10.
基于第一性原理平面波赝势(PWP)和广义梯度近似(GGA)方法,对闪锌矿结构(ZB)和岩盐结构(RS)的ZnSe在0—20GPa高压下的几何结构、态密度、能带结构进行了计算研究,分析了闪锌矿结构ZnSe和岩盐结构ZnSe的几何结构.在此基础上,研究了ZnSe的结构相变、弹性常数、成键情况以及相变压强下电子结构的变化机理.结果发现:通过焓相等原理得到的ZB相到RS相的相变压强为15.3GPa,而由弹性常数判据得到的相变压强为11.52GPa,但在9.5GPa左右并没有发现简单立方相的出现;在结构相变过程中,sp3轨道杂化现象并未消除,Zn原子的4s电子在RS相ZnSe的导电性中起主要贡献.  相似文献   

11.
An improved interaction potential model (IIPM) has been formulated to theoretically predict the pressure induced phase transition, elastic properties and thermophysical properties of thorium monopnictides (ThX; X = N, P, As and Sb). The phase transition pressures and volume drop obtained from this model show a better agreement with the available experimental than theoretical results. We have achieved elastic moduli, anisotropy factor, Poisson's ratio, Kleinman parameter, shear and stiffness constants on the basis of the calculated elastic constants. To know the anharmonic properties, we have also computed the third-order elastic constants, first-order pressure derivatives of second-order elastic constants and thermophysical quantities. Our results are in reasonable agreement with available measured and others reported data which supports the validity of model.  相似文献   

12.
王金荣  朱俊  郝彦军  姬广富  向钢  邹洋春 《物理学报》2014,63(18):186401-186401
采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度.分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显.电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显.此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.  相似文献   

13.
The pressure dependence of the symmetric elastic constants of Se and Te are analyzed. The weaker interchain forces are shown to increase rapidly with decreasing interchain distances, whereas covalent intrachain forces decrease. The results are consistent with a picture of the bonding having a partially metallic contribution which increases as the crystals approach the actual phase transition to metallic structures, stable at higher pressures.  相似文献   

14.
A modified interaction potential (MIPM) model (including the covalency effect) has been developed and applied for the first time to investigate the high-pressure structural phase transition of scandium pnictides (ScAs and ScSb). Phase transition pressures are associated with a sudden collapse in volume indicating the occurrence of first order phase transition. The phase transition pressures and associated volume collapses obtained from present potential model show a generally better agreement with available experimental data than others. The elastic constants and their pressure derivatives are also reported. Moreover, the thermo physical properties have also been obtained successfully. Our results are in good agreement with available experimental and theoretical data.  相似文献   

15.
The transition phase and elastic properties of SrS from NaCl structure (B1) to CsCl structure (B2) are investigated by ab initio plane-wave pseudopotential density functional theory method and by the quasi-harmonic Debye model. The transition pressure varies non-linearly with temperature, and the pressure of the mechanical instability increases linearly with increasing temperature. It is shown that the B1 structure SrS is a most elastically anisotropic minerat any pressure. The Debye temperature, the heat capacity, thermal expansion and Gruneisen parameter over a wide range of pressures and temperatures are also obtained.  相似文献   

16.
 利用基于密度泛函的第一性原理,计算了高压下TiN的结构转变、弹性和热力学性质。计算结果表明:在压力作用下,TiN经历了从NaCl型结构到CsCl型结构的转变,转变压力为348 GPa;TiN的弹性系数随着压力的增加呈线性增加规律。此外,还给出了德拜温度和热容量这两个重要热力学量与温度和(或)压力的依赖关系。  相似文献   

17.
The effect of hydrostatic pressure on the structures of HfN at 0 K was investigated by using the projector augmented wave (PAW) within the Perdew–Burke–Ernzerhof (PBE) form of the generalized gradient approximation (GGA). The transition pressure between NaCl (B1) and CsCl (B2) structures is predicted to be 277.3 GPa. This value is consistent with that reported by Kroll, while in contrast to the results obtained by Ojha et al. and Meenaatci et al. Moreover, the elastic properties of B1-HfN and B2-HfN under high pressures are successfully obtained. It is found that the elastic constants, bulk modulus B, shear modulus G, compressional and shear wave velocities increase monotonically with increasing pressure. The Debye temperature Θ calculated from the elastic constants of HfN is in good agreement with the experimental values. The anisotropies of B1-HfN and B2-HfN at zero pressure have also been discussed.  相似文献   

18.
The second- and third-order elastic constants and pressure derivatives of second-order elastic constants of tetragonal β-tin have been obtained using the deformation theory. The strain energy density derived using the deformation theory is compared with the strain dependent lattice energy obtained from the elastic continuum model approximation to get the expressions for the second- and third-order elastic constants. Higher order elastic constants are a measure of the anharmonicity of a crystal lattice. The 12 non-vanishing third-order elastic constants and the six pressure derivatives of the second-order elastic constants in tetragonal β-tin are obtained in the present work and are compared with the available experimental values. The second-order elastic constant C33 obtained in the present study is in reasonable agreement with the experimental values. The third-order elastic constants are generally one order of magnitude greater than the second-order elastic constants as expected of a crystalline solid. The third-order elastic constant C333 is higher in magnitude than all other values. This shows a greater anharmonicity of β-tin along the c-axis direction of the crystal.  相似文献   

19.
 采用密度泛涵理论第一原理赝势方法,利用应力和应变的关系计算了压力下六角密堆结构金属锂的弹性常数。计算结果显示,C12、C13随着压力的增加而线性增加,而压力对C44和C66的影响并不大。在各个压力点C33值都要比C11的值大,表明金属锂在z方向的硬度要比x、y方向的硬度大。还发现在理论预测的结构相变区域,C11和C33有一个跳跃。通过对压缩波各向异性参数Δp和剪切波各向异性参数Δs1、Δs2的计算发现,零压下Δp=1,并且高压下Δp值也接近1,表明压缩时金属锂表现出各向同性。Δs1、Δs2值远离1,并且随着压力的增加这种远离趋势不断增强,表现很强的剪切弹性各向异性。还讨论了压力对Cauchy关系和相对弹性常数的影响。  相似文献   

20.
The characteristic features of the elastic properties of layered crystals and their dependence on temperature and pressure are analyzed. The relations between the elastic constants of hexagonal layered crystals are given. It is shown that the anomalous behavior of the elastic constants in the temperature region of a phase transition affects both the magnitude and sign of the thermal expansion coefficients of layered crystals. From analyzing the pressure and temperature dependences of the elastic constants, it is found that the anharmonicity of the bonding forces between the layers is much greater than the anharmonicity of the intralayer forces. The contribution from thermal expansion to the variations of the elastic constants with temperature is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号