首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The synthesis and photophysical study of a family of cyclometalated iridium(III) complexes are reported. The iridium complexes have two cyclometalated (C(**)N) ligands and a single monoanionic, bidentate ancillary ligand (LX), i.e., C(**)N2Ir(LX). The C(**)N ligands can be any of a wide variety of organometallic ligands. The LX ligands used for this study were all beta-diketonates, with the major emphasis placed on acetylacetonate (acac) complexes. The majority of the C(**)N2Ir(acac) complexes phosphoresce with high quantum efficiencies (solution quantum yields, 0.1-0.6), and microsecond lifetimes (e.g., 1-14 micros). The strongly allowed phosphorescence in these complexes is the result of significant spin-orbit coupling of the Ir center. The lowest energy (emissive) excited state in these C(**)N2Ir(acac) complexes is a mixture of (3)MLCT and (3)(pi-pi) states. By choosing the appropriate C(**)N ligand, C(**)N2Ir(acac) complexes can be prepared which emit in any color from green to red. Simple, systematic changes in the C(**)N ligands, which lead to bathochromic shifts of the free ligands, lead to similar bathochromic shifts in the Ir complexes of the same ligands, consistent with "C(**)N2Ir"-centered emission. Three of the C(**)N2Ir(acac) complexes were used as dopants for organic light emitting diodes (OLEDs). The three Ir complexes, i.e., bis(2-phenylpyridinato-N,C2')iridium(acetylacetonate) [ppy2Ir(acac)], bis(2-phenyl benzothiozolato-N,C2')iridium(acetylacetonate) [bt2Ir(acac)], and bis(2-(2'-benzothienyl)pyridinato-N,C3')iridium(acetylacetonate) [btp2Ir(acac)], were doped into the emissive region of multilayer, vapor-deposited OLEDs. The ppy2Ir(acac)-, bt2Ir(acac)-, and btp2Ir(acac)-based OLEDs give green, yellow, and red electroluminescence, respectively, with very similar current-voltage characteristics. The OLEDs give high external quantum efficiencies, ranging from 6 to 12.3%, with the ppy2Ir(acac) giving the highest efficiency (12.3%, 38 lm/W, >50 Cd/A). The btp2Ir(acac)-based device gives saturated red emission with a quantum efficiency of 6.5% and a luminance efficiency of 2.2 lm/W. These C(**)N2Ir(acac)-doped OLEDs show some of the highest efficiencies reported for organic light emitting diodes. The high efficiencies result from efficient trapping and radiative relaxation of the singlet and triplet excitons formed in the electroluminescent process.  相似文献   

2.
We report the synthesis of a new class of thermally stable and strongly luminescent cyclometalated iridium(III) complexes 1 – 6 , which contain the 2‐acetylbenzo[b]thiophene‐3‐olate (bt) ligand, and their application in organic light‐emitting diodes (OLEDs). These heteroleptic iridium(III) complexes with bt as the ancillary ligand have a decomposition temperature that is 10–20 % higher and lower emission self‐quenching constants than those of their corresponding complexes with acetylacetonate (acac). The luminescent color of these iridium(III) complexes could be fine‐tuned from orange (e.g., 2‐phenyl‐6‐(trifluoromethyl)benzo[d]thiazole (cf3bta) for 4 ) to pure red (e.g., lpt (Hlpt=4‐methyl‐2‐(thiophen‐2‐yl)quinolone) for 6 ) by varying the cyclometalating ligands (C‐deprotonated C^N). In particular, highly efficient OLEDs based on 6 as dopant (emitter) and 1,3‐bis(carbazol‐9‐yl)benzene (mCP) as host that exhibit stable red emission over a wide range of brightness with CIE chromaticity coordinates of (0.67, 0.33) well matched to the National Television System Committee (NTSC) standard have been fabricated along with an external quantum efficiency (EQE) and current efficiency of 9 % and 10 cd A?1, respectively. A further 50 % increase in EQE (>13 %) by replacing mCP with bis[4‐(6H‐indolo[2,3‐b]quinoxalin‐6‐yl)phenyl]diphenylsilane (BIQS) as host for 6 in the red OLED is demonstrated. The performance of OLEDs fabricated with 6 (i.e., [(lpt)2Ir(bt)]) was comparable to that of the analogous iridium(III) complex that bore acac (i.e., [(lpt)2Ir(acac)]; 6 a in this work) [Adv. Mater.­ 2011 , 23, 2981] fabricated under similar conditions. By using ntt (Hnnt=3‐hydroxynaphtho[2,3‐b]thiophen‐2‐yl)(thiophen‐2‐yl)methanone) ligand, a substituted derivative of bt, the [(cf3bta)2Ir(ntt)] was prepared and found to display deep red emission at around 700 nm with a quantum yield of 12 % in mCP thin film.  相似文献   

3.
We report the singlet oxygen sensitization properties of a series of bis-cyclometalated Ir(III) complexes (i.e., (bt)2Ir(acac), (bsn)2Ir(acac), and (pq)2Ir(acac); bt = 2-phenylbenzothiazole, bsn = 2-(1-naphthyl)benzothiazole, pq = 2-phenylquinoline, and acac = acetylacetonate). Complexes with acetylacetonate ancillary ligands give singlet oxygen quantum yields near unity (PhiDelta = (0.7-1.0) +/- 0.1), whether exciting the ligand-based state or the lowest energy excited state (MLCT + 3LC). The singlet oxygen quenching rates for these beta-diketonate complexes were found to be small [(5 +/- 2) x 105 to (6 +/- 0.2) x 106 M-1 s-1], roughly 3 orders of magnitude slower than the corresponding phosphorescence quenching rate. Similar complexes were prepared with glycine or pyridine tethered to the Ir(III) center (i.e., (bsn)2Ir(gly) and (bt)2Ir(py)Cl; gly = glycine and py = pyridine). The glycine and pyridine derivatives give high singlet oxygen yields (PhiDelta = (0.7-1.0) +/- 0.1).  相似文献   

4.
We report a theoretical analysis of a series of heteroleptic iridium(III) complexes (dox)(2)Ir(acac) [dox = 2,5-diphenyl-1,3,4-oxadiazolato-N,C(2), acac = acetylacetonate] (1a), (fox)(2)Ir(acac) [fox = 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazolato-N,C(2)] (1b), (fox)(2)Ir(Et(2)dtc) [Et(2)dtc = N,N'-diethyldithiocarbamate] (2), (fox)(2)Ir(Et(2)dtp) [Et(2)dtp = O,O'-diethyldithiophosphate] (3), (pypz)(2)Ir(acac) [pypz = 3,5-di(2-pyridyl)pyrazole] (4a), (O-pypz)(2)Ir(acac) (4b), (S-pypz)(2)Ir(acac) (4c) and (bptz)(2)Ir(acac) [bptz = 3-tert-butyl-5-(2-pyridyl)triazole] (5) by using the density functional theory (DFT) method to investigate their electronic structures and photophysical properties and obtain further insights into the phosphorescent efficiency mechanism. Meanwhile, we also investigate the influence of ancillary and cyclometalated ligands on the properties of the above complexes. The results reveal that the nature of the ancillary ligands can influence the electron density distributions of frontier molecular orbitals and their energies, resulting in change in transition character and emission color, while the different cyclometalated ligands have a large impact on the charge transfer performances of the studied complexes. The calculated absorption and luminescence properties of the four complexes 1a, 1b, 2 and 3 are compared with the available experimental data and a good agreement is obtained. Further, the assumed complexes 4a and 4b possess better charge transfer abilities and more balanced charge transfer rates, and they are potential candidates as blue-emitting materials.  相似文献   

5.
A new series of iridium(III) mixed ligand complexes TBA[Ir(ppy)(2)(CN)(2)] (1), TBA[Ir(ppy)(2)(NCS)(2)] (2), TBA[Ir(ppy)(2)(NCO)(2)] (3), and [Ir(ppy)(2)(acac)] (4) (ppy = 2-phenylpyridine; acac = acetoylacetonate, TBA = tetrabutylammonium cation) have been developed and fully characterized by UV-vis, emission, IR, NMR, and cyclic voltammetric studies. The lowest energy MLCT transitions are tuned from 463 to 494 nm by tuning the energy of the HOMO levels. These complexes show emission maxima in the blue, green, and yellow region of the visible spectrum and exhibit unprecedented phosphorescence quantum yields, 97 +/- 3% with an excited-state lifetimes of 1-3 micros in dichloromethane solution at 298 K. The near-unity quantum yields of these complexes are related to an increased energy gap between the triplet emitting state and the deactivating e(g) level that have been achieved by meticulous selection of ligands having strong ligand field strength. Organic light-emitting devices were fabricated using the complex 4 doped into a purified 4,4'-bis(carbazol-9-yl)biphenyl host exhibiting a maximum of the external quantum efficiencies of 13.2% and a power efficiency of 37 lm/W for the 9 mol % doped system.  相似文献   

6.
Three novel cyclometalated ligands 1-benzyl-2-phenyl-1H-benzoimidazole(BPBM), 1-(4-methoxy-benzyl)-2-(4-methoxy-phenyl)-1H-benzoimidazole(MBMPB) and 4-[2-(4-dimethylamino-phenyl)-benzoinidazol-1-ylmethyl]-phenyl-dimethyl-amine(DBPA) were designed and synthesized, and the corresponding highly efficiency green-emitting phosphorescent iridium complexes Ir(BPBM)2(acac)(1), Ir(MBMPB)2(acac)(2) and Ir(DPBA)2(acac) (3) with acetylacetone(acac) as auxiliary ligand were also synthesized. The ligands are functionalized by bulky non-planarity substituents, thus the phosphorescent concentration quenching is substantially suppressed, and all the complexes exhibit bright photoluminescence(PL) in solid state. The photo-physical properties of the three iridium complexes were researched in detail. The results indicate that they have potential application in fabricating non-doped electrophosphorescence device.  相似文献   

7.
This study reports substituent effects of iridium complexes with 1-phenylisoquinoline ligands. The emission spectra and phosphorescence quantum yields of the complexes differ from that of tris(1-phenylisoquinolinato-C2,N)iridium(iii)(Irpiq) depending on the substituents. The maximum emission peak, quantum yield and lifetime of those complexes ranged from 598-635 nm, 0.17-0.32 and 1.07-2.34 micros, respectively. This indicates the nature of the substituents has a significant influence on the kinetics of the excited-state decay. The substituents attached to phenyl ring have an influence on a stability of the HOMO. Furthermore, those substituents have effect on the contribution to a mixing between 3pi-pi* and (3)MLCT for the lowest excited states. Some of the complexes display the larger quantum yield than Irpiq, which has the quantum yield of 0.22. The organic light emitting diode (OLED) device based on tris [1-(4-fluoro-5-methylphenyl)isoquinolinato-C2,N]iridium(iii)(Ir4F5Mpiq) yielded high external quantum efficiency of 15.5% and a power efficiency of 12.4 lm W(-1) at a luminance of 218 cd m(-2). An emission color of the device was close to an NTSC specification with CIE chromaticity characteristics of (0.66, 0.34).  相似文献   

8.
Wu Y  Jing H  Dong Z  Zhao Q  Wu H  Li F 《Inorganic chemistry》2011,50(16):7412-7420
In this work, a neutral iridium(III) complex [Ir(bt)(2)(acac)] (Hbt = 2-phenylbenzothiazole; Hacac = acetylacetone) has been realized as a Hg(II)-selective sensor through UV-vis absorption, phosphorescence emission, and electrochemical measurements and was further developed as a phosphorescent agent for monitoring intracellular Hg(II). Upon addition of Hg(II) to a solution of [Ir(bt)(2)(acac)], a noticeable spectral blue shift in both absorption and phosphorescent emission bands was measured. (1)H NMR spectroscopic titration experiments indicated that coordination of Hg(II) to the complex induces fast decomposition of [Ir(bt)(2)(acac)] to form a new complex, which is responsible for the significant variations in optical and electrochemical signals. Importantly, cell imaging experiments have shown that [Ir(bt)(2)(acac)] is membrane permeable and can be used to monitor the changes in Hg(II) levels within cells in a ratiometric phosphorescence mode.  相似文献   

9.
A series of [−2, −1, 0] charged-ligand based iridium(III) complexes of [Ir(bph)(bpy)(acac)] ( 1 ), [Ir(bph)(2MeO-bpy)(acac)] ( 2 ), [Ir(bph)(2CF3-bpy)(acac)] ( 3 ), [Ir(bph)(bpy)(2tBu-acac)] ( 4 ) and [Ir(bph)(bpy)(CF3-acac)] ( 5 ), which using biphenyl as dianionic ligand [−2], acetylacetone (or its derivatives) as monoanionic ligand [−1], and 2,2′-bipyridine (or its derivatives) as neutral ligand [0] were designed and synthesized. The chemical structures were well characterized. All of the ligands have simple chemical structures, thus further making the complexes have excellent thermal stability and are easy to sublimate and purify. Phosphorescent characteristics with short emission lifetime were demonstrated for these emitters. Notably, all of the complexes exhibit remarkable deep red/near infrared emission, which is quite different from the reported [−1, −1, −1] charged-ligand based iridium(III) complexes. The photophysical properties of these complexes are regularly improved by introducing electron-donating or -withdrawing groups into [−1] or [0] charged-ligand. The related organic light-emitting diodes exhibited deep red/near infrared emission with acceptable external quantum efficiency and low turn-on voltage (<2.6 V). This work provides a new idea for the construction of new type phosphorescent iridium(III) emitters with different valence states of [−2, −1, 0] charged ligands, thus offering new opportunities and challenges for their optoelectronic applications.  相似文献   

10.
Solution-processible conjugated electrophosphorescent polymers   总被引:4,自引:0,他引:4  
We report the synthesis and photophysical study of a series of solution-processible phosphorescent iridium complexes. These comprise bis-cyclometalated iridium units [Ir(ppy)(2)(acac)] or [Ir(btp)(2)(acac)] where ppy is 2-phenylpyridinato, btp is 2-(2'-benzo[b]thienyl)pyridinato, and acac is acetylacetonate. The iridium units are covalently attached to and in conjugation with oligo(9,9-dioctylfluorenyl-2,7-diyl) [(FO)(n)] to form complexes [Ir(ppy-(FO)(n))(2)(acac)] or [Ir(btp-(FO)(n))(2)(acac)], where the number of fluorene units, n, is 1, 2, 3, approximately 10, approximately 20, approximately 30, or approximately 40. All the complexes exhibit emission from a mixed triplet state in both photoluminescence and electroluminescence, with efficient quenching of the fluorene singlet emission. Short-chain complexes, 11-13, [Ir(ppy-(FO)(n)-FH)(2)(acac)] where n = 0, 1, or 2, show green light emission, red-shifted through the FO attachment by about 70 meV, but for longer chains there is quenching because of the lower energy triplet state associated with polyfluorene. In contrast, polymer complexes 18-21 [Ir(btp-(FO)(n))(2)(acac)] where n is 5-40 have better triplet energy level matching and can be used to provide efficient red phosphorescent polymer light-emitting diodes, with a red shift due to the fluorene attachment of about 50 meV. We contrast this small (50-70 meV) and short-range modification of the triplet energies through extended conjugation, with the much more substantial evolution of the pi-pi* singlet transitions, which saturate at about n = 10. These covalently bound materials show improvements in efficiency over simple blends and will form the basis of future investigations into energy-transfer processes occurring in light-emitting diodes.  相似文献   

11.
Biscyclometalated iridium(III) complexes with an ancillary acetylacetone ligand, Ir(L)(2)(acac), (L = 2-(benzo[b]thiophen-2-yl)pyridine (btp), 1-phenylisoquinoline (piq), 2-phenylbenzothiazole (bt), 2-phenylpyridine (ppy), acac = deprotonated acetylacetone), demonstrate spectroscopic changes in their UV-Vis absorption and luminescent emission under acidic conditions. Such changes were found to be the same as those observed when certain mercury salts exist in the systems. Because some iridium(III) complexes have sulfur-containing ligands (i.e., btp and bt), a question was then raised as for whether or not the spectroscopic changes are associated with the specific affinity of Hg(2+) to the sulfur atom. Extensive studies performed in this work unambiguously proved that the observed spectroscopic changes were solely the results of the acid induced departure of acac and the follow-up coordination of solvent acetonitrile to the iridium(III) center and that the generally anticipated Hg(2+)-S affinity and its effect on the photophysical properties of iridium(III) luminophores did not play a role.  相似文献   

12.
The synthesis and photophysical characterization of a series of (N,C(2')-(2-para-tolylpyridyl))2 Ir(LL') [(tpy)2 Ir(LL')] (LL' = 2,4-pentanedionato (acac), bis(pyrazolyl)borate ligands and their analogues, diphosphine chelates and tert-butylisocyanide (CN-t-Bu)) are reported. A smaller series of [(dfppy)2 Ir(LL')] (dfppy = N,C(2')-2-(4',6'-difluorophenyl)pyridyl) complexes were also examined along with two previously reported compounds, (ppy)2 Ir(CN)2- and (ppy)2 Ir(NCS)2- (ppy = N,C(2')-2-phenylpyridyl). The (tpy)2 Ir(PPh2CH2)2 BPh2 and [(tpy)2 Ir(CN-t-Bu)2](CF3SO3) complexes have been structurally characterized by X-ray crystallography. The Ir-C(aryl) bond lengths in (tpy)2 Ir(CN-t-Bu)2+ (2.047(5) and 2.072(5) A) and (tpy)2 Ir(PPh2CH2)2 BPh2 (2.047(9) and 2.057(9) A) are longer than their counterparts in (tpy)2 Ir(acac) (1.982(6) and 1.985(7) A). Density functional theory calculations carried out on (ppy)2 Ir(CN-Me)2+ show that the highest occupied molecular orbital (HOMO) consists of a mixture of phenyl-pi and Ir-d orbitals, while the lowest unoccupied molecular orbital is localized primarily on the pyridyl-pi orbitals. Electrochemical analysis of the (tpy)2 Ir(LL') complexes shows that the reduction potentials are largely unaffected by variation in the ancillary ligand, whereas the oxidation potentials vary over a much wider range (as much as 400 mV between two different LL' ligands). Spectroscopic analysis of the cyclometalated Ir complexes reveals that the lowest energy excited state (T1) is a triplet ligand-centered state (3LC) on the cyclometalating ligand admixed with 1MLCT (MLCT = metal-to-ligand charge-transfer) character. The different ancillary ligands alter the 1MLCT state energy mainly by changing the HOMO energy. Destabilization of the 1MLCT state results in less 1MLCT character mixed into the T1 state, which in turn leads to an increase in the emission energy. The increase in emission energy leads to a linear decrease in ln(k(nr)) (k(nr) = nonradiative decay rate). Decreased 1MLCT character in the T1 state also increases the Huang-Rhys factors in the emission spectra, decreases the extinction coefficient of the T1 transition, and consequently decreases the radiative decay rates (k(r)). Overall, the luminescence quantum yields decline with increasing emission energies. A linear dependence of the radiative decay rate (k(r)) or extinction coefficient (epsilon) on (1/deltaE)2 has been demonstrated, where deltaE is the energy difference between the 1MLCT and 3LC transitions. A value of 200 cm(-1) for the spin-orbital coupling matrix element 3LC absolute value(H(SO)) 1MLCT of the (tpy)2 Ir(LL') complexes can be deduced from this linear relationship. The (fppy)2 Ir(LL') complexes with corresponding ancillary ligands display similar trends in excited-state properties.  相似文献   

13.
The synthesis of a new family of octahedral Ir(III) complexes with dual cyclometalating phosphine chelates, namely: 1-(diphenylphosphino)naphthalene (dpnaH) and isoquinoline (dppiH), is reported. Two series of intermediate complexes, [Ir(dpna)(tht)(2)Cl(2)] (1), [Ir(dpna)(2)(OAc)] (2), [Ir(dppiH)(dppi)Cl(2)] (3) and [Ir(dppi)(2)(OAc)] (4), which can be classified by the coexistence of either a pair of cis-chlorides or a single acetate chelate, were obtained from treatment of phosphine with [IrCl(3)(tht)(3)] (tht = tetrahydrothiophene). The in situ generated acetate complexes 2 and 4 could react with azolate chelates, namely: 5-(2-pyridyl)-3-trifluoromethyl pyrazole (fppzH) and 5-(1-isoquinolyl)-3-tert-butyl-1,2,4-triazole (iqbtzH), to afford a new series of luminescent complexes [Ir(dpna)(2)(fppz)] (5a and 5b), [Ir(dpna)(2)(iqbtz)] (6a and 6b), [Ir(dppi)(2)(fppz)] (7a) and [Ir(dppi)(2)(iqbtz)] (8a). The phosphorescence lifetime (τ(obs)) fell in the range of a few tens of μs, showing possession of excessive ligand-centered ππ* mixed in part with MLCT character. A density functional theory (DFT) study was also conducted in order to shed light on the origin of the transitions in the absorption and emission spectra and to predict emission energies for these complexes. Organic light emitting diodes (OLEDs) displaying bright orange emission and with maximum η(ext) up to 17.1% were fabricated employing complexes 6a and 8a as the phosphorescent dopants.  相似文献   

14.
Yuan YJ  Zhang JY  Yu ZT  Feng JY  Luo WJ  Ye JH  Zou ZG 《Inorganic chemistry》2012,51(7):4123-4133
To explore structure-activity relationships with respect to light-harvesting behavior, a family of bis-cyclometalated iridium complexes [Ir(C^N)(2)(Hbpdc)] 2-5 (where C^N = 2-phenylbenzothiazole and its functionalized derivatives, and H(2)bpdc =2,2'-bipyridine-4,4'-dicarboxylate) was synthesized using a facile method. The photophysical and electrochemical properties of these complexes were investigated and compared to those of analogue 1 (C^N = (4-trifluoromethyl)-2-phenylbenzothiazole); they were also investigated theoretically using density functional theory. The molecular structures of complexes 2-4 were determined by X-ray crystallography, which revealed typical octahedral coordination geometry. The structural modifications involved in the complexes were accomplished through the attributes of electron-withdrawing CF(3) and electron-donating NMe(2) substituents. The UV-vis spectra of these species, except for that of 5, displayed a broad absorption in the low-energy region, which originated from metal-to-ligand charge-transfer transitions. These complexes were found to exhibit visible-light-induced hydrogen production and light-to-electricity conversion in photoelectrochemical cells. The yield of hydrogen production from water using these complexes was compared, which revealed substantial dependences on their structures, particularly on the substituent of the cyclometalated ligand. Among the systems, the highest turnover number of 1501 was achieved with complex 2, in which the electron-withdrawing CF(3) substituent was connected to a phenyl ring of the cyclometalated ligand. The carboxylate anchoring groups made the complexes highly suitable for grafting onto TiO(2) (P25) surfaces for efficient electron transfer and thus resulted in an enhancement of hydrogen evolution compared to the unattached homogeneous systems. In addition, the combined incorporation of the electron-donating NMe(2) group and the electron-withdrawing CF(3) substituent on the cyclometalated ligand caused complex 5 to not work well for hydrogen production. Their incorporation, however, enhanced the performance of 5 in the light-harvesting application in nanocrystalline TiO(2) dye-sensitized solar cells, which was attributed to the intense absorption in the visible region.  相似文献   

15.
Combinations of electron-withdrawing and -donating substituents on the 8-hydroxyquinoline ligand of the tris(8-hydroxyquinoline)aluminum (Alq(3)) complexes allow for control of the HOMO and LUMO energies and the HOMO-LUMO gap responsible for emission from the complexes. Here, we present a systematic study on tuning the emission and electroluminescence (EL) from Alq(3) complexes from the green to blue region. In this study, we explored the combination of electron-donating substituents on C4 and C6. Compounds 1-6 displayed the emission tuning between 478 and 526 nm, and fluorescence quantum yield between 0.15 and 0.57. The compounds 2-6 were used as emitters and hosts in organic light-emitting diodes (OLEDs). The highest OLED external quantum efficiency (EQE) observed was 4.6%, which is among the highest observed for Alq(3) complexes. Also, the compounds 3-5 were used as hosts for red phosphorescent dopants to obtain white light-emitting diodes (WOLED). The WOLEDs displayed high efficiency (EQE up to 19%) and high white color purity (color rendering index (CRI≈85).  相似文献   

16.
The reaction between 2-pyrazolyl-4-X-anilines, H(pzAnX), (X = para-OMe (L1), Me (L2), H (L3), Cl (L4), CO2Et (L5), CF3 (L6), CN (L7)) and triphenylboron in boiling toluene affords the respective, highly emissive N,N'-boron chelate complexes, BPh2(pzAnX) (X = para-OMe (1), Me (2), H (3), Cl (4), CO2Et (5), CF3 (6), CN (7)) in high yield. The structural, electrochemical, and photophysical properties of the new boron complexes can be fine-tuned by varying the electron-withdrawing or -donating power of the para-aniline substituent (delineated by the substituent's Hammett parameter). Those complexes with electron-withdrawing para-aniline substituents such as CO2Et (5), CF3 (6), and CN (7) have more planar chelate rings, more 'quinoidal' distortion in the aniline rings, greater chemical stability, higher oxidation potentials, and more intense (phiF = 0.81 for 7 in toluene), higher-energy (blue) fluorescent emission compared to those with electron-donating substituents. Thus, for 1 the oxidation potential is 0.53 V versus Ag/AgCl (compared to 1.12 V for 7), and the emission is tuned to the yellow-green but at an expense in terms of lower quantum yields (phiF = 0.07 for 1 in toluene) and increased chemical reactivity. Density functional calculations (B3LYP/6-31G*) on PM3 energy-minimized structures of the ligands and boron complexes reproduced experimentally observed data and trends and provided further insight into the nature of the electronic transitions.  相似文献   

17.
Cyclometallated phenyls with substituents para to the metal have a larger impact on the redox potentials and emission of complexes [Ir(R-ppz)(2)(bipy)][PF(6)] than substituents at the meta position and hence enable tuning of emission wavelength over a wider range using the same substituent.  相似文献   

18.
The syntheses of Ir(I) and Ir(III) complexes incorporating the electron-withdrawing pincer ligand (1,3-C(6)H(4)(CH(2)P(CF(3))(2))(2)) ((CF(3))PCPH) with (PPh(3))(3)Ir(CO)H and subsequent chemistry are reported. Under ambient conditions, reaction of 1 equiv. (CF(3))PCPH with (PPh(3))(3)Ir(CO)H gave the mono-bridged complex [Ir(CO)(PPh(3))(2)(H)](2)(μ-(CF(3))PCPH) (1). Reaction of (PPh(3))(3)Ir(CO)H with excess (CF(3))PCPH and MeI gave the doubly-bridged complex [Ir(CO)(PPh(3))(H)](2)(μ-(CF(3))PCPH)(2) (2), whereas the tetrameric oligomer [Ir(CO)(PPh(3))(H)](4)(μ-(CF(3))PCPH)(4) (2-sq) was obtained from a 1:1 ligand:metal mixture in benzene in the presence of excess MeI. At higher temperatures (165 °C) the reaction of (CF(3))PCPH with (PPh(3))(3)Ir(CO)H afforded the 5-coordinate Ir(I) complex ((CF(3))PCP)Ir(CO)(PPh(3)) (3). Complex 3 shows mild catalytic activity for the decarbonylation of 2-naphthaldehyde in refluxing diglyme (162 °C).  相似文献   

19.
Phosphorescence studies of a series of facial homoleptic cyclometalated iridium(III) complexes have been carried out. The complexes studied have the general structure Ir(III)(C-N)(3), where (C-N) is a monoanionic cyclometalating ligand: 2-(5-methylthiophen-2-yl)pyridinato, 2-(thiophen-2-yl)-5-trifluoromethylpyridinato, 2,5-di(thiophen-2-yl)pyridinato, 2,5-di(5-methylthiophen-2-yl)pyridinato, 2-(benzo[b]thiophen-2-yl)pyridinato, 2-(9,9-dimethyl-9H-fluoren-2-yl)pyridinato, 1-phenylisoquinolinato, 1-(thiophen-2-yl)isoquinolinato, or 1-(9,9-dimethyl-9H-fluoren-2-yl)isoquinolinato. Luminescence properties of all the complexes at 298 K in toluene are as follows: quantum yields of phosphorescence Phi(p) = 0.08-0.29, emission peaks lambda(max) = 558-652 nm, and emission lifetimes tau = 0.74-4.7 micros. Bathochromic shifts of the Ir(thpy)(3) family [the complexes with 2-(thiophen-2-yl)pyridine derivatives] are observed by introducing appropriate substituents, e.g., methyl, trifluoromethyl, or thiophen-2-yl. However, Phi(p) of the red emissive complexes (lambda(max) > 600 nm) becomes small, caused by a significant decrease of the radiative rate constant, k(r). In contrast, the complexes with the 1-arylisoquinoline ligands are found to have marked red shifts of lambda(max) and very high Phi(p) (0.19-0.26). These complexes are found to possess dominantly (3)MLCT (metal-to-ligand charge transfer) excited states and have k(r) values approximately 1 order of magnitude larger than those of the Ir(thpy)(3) family. An organic light-emitting diode (OLED) device that uses Ir(1-phenylisoquinolinato)(3) as a phosphorescent dopant produces very high efficiency (external quantum efficiency eta(ex) = 10.3% and power efficiency 8.0 lm/W at 100 cd/m(2)) and pure-red emission with 1931 CIE (Commission Internationale de L'Eclairage) chromaticity coordinates (x = 0.68, y = 0.32).  相似文献   

20.
Two newly prepared oligothienylpyridines, 5-(2-pyridyl)-5'-dodecyl-2,2'-bithiophene, HL(2), and 5-(2-pyridyl)-5'-dodecyl-2,2':5',2'-ter-thiophene, HL(3), bind to platinum(II) and iridium(III) as N∧C-coordinating ligands, cyclometallating at position C(4) in the thiophene ring adjacent to the pyridine, leaving a chain of either one or two pendent thiophenes. The synthesis of complexes of the form [PtL(n)(acac)] and [Ir(L(n))(2)(acac)] (n = 2 or 3) is described. The absorption and luminescence properties of these four new complexes are compared with the behavior of the known complexes [PtL(1)(acac)] and [Ir(L(1))(2)(acac)] {HL(1) = 2-(2-thienyl)pyridine}, and the profound differences in behavior are interpreted with the aid of time-dependent density functional theory (TD-DFT) calculations. Whereas [PtL(1)(acac)] displays solely intense phosphorescence from a triplet state of mixed ππ*/MLCT character, the phosphorescence of [PtL(2)(acac)] and [PtL(3)(acac)] is weak, strongly red shifted, and accompanied by higher-energy fluorescence. TD-DFT reveals that this difference is probably due to the metal character in the lowest-energy excited states being strongly attenuated upon introduction of the additional thienyl rings, such that the spin-orbit coupling effect of the metal in promoting intersystem crossing is reduced. A similar pattern of behavior is observed for the iridium complexes, except that the changeover to dual emission is delayed to the terthiophene complex [Ir(L(3))(2)(acac)], reflecting the higher degree of metal character in the frontier orbitals of the iridium complexes than their platinum counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号