首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Absolute (pulsed laser photolysis, 4-639 Torr N(2) or air, 240-357 K) and relative rate methods (50 and 760 Torr air, 296 K) were used to measure rate coefficients k(1) for the title reaction, OH + C(4)H(5)N → products (R1). Although the pressure and temperature dependent rate coefficient is adequately represented by a falloff parametrization, calculations of the potential energy surface indicate a complex reaction system with multiple reaction paths (addition only) in the falloff regime. At 298 K and 760 Torr (1 Torr = 1.33 mbar) the rate coefficient obtained from the parametrization is k(1) = (1.28 ± 0.1) × 10(-10) cm(3) molecule(-1) s(-1), in good agreement with the value of (1.10 ± 0.27) × 10(-10) cm(3) molecule(-1) s(-1) obtained in the relative rate study (relative to C(5)H(8), isoprene) at this temperature and pressure. The accuracy of the absolute rate coefficient determination was enhanced by online optical absorption measurements of the C(4)H(5)N concentration at 184.95 nm using a value σ(184.95nm) = (1.26 ± 0.02) × 10(-17) cm(2) molecule(-1), which was determined in this work.  相似文献   

2.
Dichlorvos [2,2-dichlorovinyl dimethyl phosphate, (CH(3)O)(2)P(O)OCH═CCl(2)] is a relatively volatile in-use insecticide. Rate constants for its reaction with OH radicals have been measured over the temperature range 296-348 K and atmospheric pressure of air using a relative rate method. The rate expression obtained was 3.53 × 10(-13) e((1367±239)/T) cm(3) molecule(-1) s(-1), with a 298 K rate constant of (3.5 ± 0.7) × 10(-11) cm(3) molecule(-1) s(-1), where the error in the 298 K rate constant is the estimated overall uncertainty. In addition, rate constants for the reactions of NO(3) radicals and O(3) with dichlorvos, of (2.5 ± 0.5) × 10(-13) cm(3) molecule(-1) s(-1) and (1.7 ± 1.0) × 10(-19) cm(3) molecule(-1) s(-1), respectively, were measured at 296 ± 2 K. Products of the OH and NO(3) radical-initiated reactions were investigated using in situ atmospheric pressure ionization mass spectrometry (API-MS) and (OH radical reaction only) in situ Fourier transform infrared (FT-IR) spectroscopy. For the OH radical reaction, the major initial products were CO, phosgene [C(O)Cl(2)] and dimethyl phosphate [(CH(3)O)(2)P(O)OH], with equal (to within ±10%) formation yields of CO and C(O)Cl(2). The API-MS analyses were consistent with formation of (CH(3)O)(2)P(O)OH from both the OH and NO(3) radical-initiated reactions. In the atmosphere, the dominant chemical loss processes for dichlorvos will be daytime reaction with OH radicals and nighttime reaction with NO(3) radicals, with an estimated lifetime of a few hours.  相似文献   

3.
Atmospheric chemistry of i-butanol   总被引:1,自引:0,他引:1  
Smog chamber/FTIR techniques were used to determine rate constants of k(Cl + i-butanol) = (2.06 ± 0.40) × 10(-10), k(Cl + i-butyraldehyde) = (1.37 ± 0.08) × 10(-10), and k(OH + i-butanol) = (1.14 ± 0.17) × 10(-11) cm(3) molecule(-1) s(-1) in 700 Torr of N(2)/O(2) diluent at 296 ± 2K. The UV irradiation of i-butanol/Cl(2)/N(2) mixtures gave i-butyraldehyde in a molar yield of 53 ± 3%. The chlorine atom initiated oxidation of i-butanol in the absence of NO gave i-butyraldehyde in a molar yield of 48 ± 3%. The chlorine atom initiated oxidation of i-butanol in the presence of NO gave (molar yields): i-butyraldehyde (46 ± 3%), acetone (35 ± 3%), and formaldehyde (49 ± 3%). The OH radical initiated oxidation of i-butanol in the presence of NO gave acetone in a yield of 61 ± 4%. The reaction of chlorine atoms with i-butanol proceeds 51 ± 5% via attack on the α-position to give an α-hydroxy alkyl radical that reacts with O(2) to give i-butyraldehyde. The atmospheric fate of (CH(3))(2)C(O)CH(2)OH alkoxy radicals is decomposition to acetone and CH(2)OH radicals. The atmospheric fate of OCH(2)(CH(3))CHCH(2)OH alkoxy radicals is decomposition to formaldehyde and CH(3)CHCH(2)OH radicals. The results are consistent with, and serve to validate, the mechanism that has been assumed in the estimation of the photochemical ozone creation potential of i-butanol.  相似文献   

4.
Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be <6 × 10(-21) cm(3) molecule(-1) s(-1). The atmospheric lifetime of (Z)-CF(3)CH═CHCF(3) due to loss by OH reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.  相似文献   

5.
The smog chamber/Fourier-transform infrared spectroscopy (FTIR) technique was used to measure the rate coefficients k(Cl + CF(3)CHClOCHF(2), isoflurane) = (4.5 ± 0.8) × 10(-15), k(Cl + CF(3)CHFOCHF(2), desflurane) = (1.0 ± 0.3) × 10(-15), k(Cl + (CF(3))(2)CHOCH(2)F, sevoflurane) = (1.1 ± 0.1) × 10(-13), and k(OH + (CF(3))(2)CHOCH(2)F) = (3.5 ± 0.7) × 10(-14) cm(3) molecule(-1) in 700 Torr of N(2)/air diluent at 295 ± 2 K. An upper limit of 6 × 10(-17) cm(3) molecule(-1) was established for k(Cl + (CF(3))(2)CHOC(O)F). The laser photolysis/laser-induced fluorescence (LP/LIF) technique was employed to determine hydroxyl radical rate coefficients as a function of temperature (241-298 K): k(OH + CF(3)CHFOCHF(2)) = (7.05 ± 1.80) × 10(-13) exp[-(1551 ± 72)/T] cm(3) molecule(-1); k(296 ± 1 K) = (3.73 ± 0.08) × 10(-15) cm(3) molecule(-1), and k(OH + (CF(3))(2)CHOCH(2)F) = (9.98 ± 3.24) × 10(-13) exp[-(969 ± 82)/T] cm(3) molecule(-1); k(298 ± 1 K) = (3.94 ± 0.30) × 10(-14) cm(3) molecule(-1). The rate coefficient of k(OH + CF(3)CHClOCHF(2), 296 ± 1 K) = (1.45 ± 0.16) × 10(-14) cm(3) molecule(-1) was also determined. Chlorine atoms react with CF(3)CHFOCHF(2) via H-abstraction to give CF(3)CFOCHF(2) and CF(3)CHFOCF(2) radicals in yields of approximately 83% and 17%. The major atmospheric fate of the CF(3)C(O)FOCHF(2) alkoxy radical is decomposition via elimination of CF(3) to give FC(O)OCHF(2) and is unaffected by the method used to generate the CF(3)C(O)FOCHF(2) radicals. CF(3)CHFOCF(2) radicals add O(2) and are converted by subsequent reactions into CF(3)CHFOCF(2)O alkoxy radicals, which decompose to give COF(2) and CF(3)CHFO radicals. In 700 Torr of air 82% of CF(3)CHFO radicals undergo C-C scission to yield HC(O)F and CF(3) radicals with the remaining 18% reacting with O(2) to give CF(3)C(O)F. Atmospheric oxidation of (CF(3))(2)CHOCH(2)F gives (CF(3))(2)CHOC(O)F in a molar yield of 93 ± 6% with CF(3)C(O)CF(3) and HCOF as minor products. The IR spectra of (CF(3))(2)CHOC(O)F and FC(O)OCHF(2) are reported for the first time. The atmospheric lifetimes of CF(3)CHClOCHF(2), CF(3)CHFOCHF(2), and (CF(3))(2)CHOCH(2)F (sevoflurane) are estimated at 3.2, 14, and 1.1 years, respectively. The 100 year time horizon global warming potentials of isoflurane, desflurane, and sevoflurane are 510, 2540, and 130, respectively. The atmospheric degradation products of these anesthetics are not of environmental concern.  相似文献   

6.
The photolysis and OH-initiated oxidation of glycolaldehyde (HOCH(2)CHO), which are relevant atmospheric processes, have been investigated under different conditions using complementary methods in three different laboratories. The UV absorption cross sections of glycolaldehyde determined in two of the laboratories are in excellent agreement. The photolysis of glycolaldehyde in air has been investigated in a quartz cell with sunlamps and in the EUPHORE chamber irradiated by sunlight. The mean photolysis rate measured under solar radiation was (1.1 +/- 0.3) x 10(-5) s(-1) corresponding to a mean effective photolysis quantum yield of (1.3 +/- 0.3). The major products detected were HCHO and CO, whereas CH(3)OH was also observed with an initial yield around 10%. Evidence for OH production was found in both experiments using either OH scavenger or OH tracer species. Photolysis of glycolaldehyde was used as the OH source to measure the reaction rate constants of OH with a series of dienes by the relative method and to identify and quantify the oxidation products of the OH-initiated oxidation of 2-propanol. The different experiments suggest that OH is produced by the primary channel: HOCH(2)CHO + hnu --> OH + CH(2)CHO (1). The rate constant of the OH reaction with glycolaldehyde has been measured at 298 K using the relative method: k(glyc) = (1.2 +/- 0.3) x 10(-11) cm(3) molecule(-1) s(-1). The product study of the OH-initiated oxidation of glycolaldehyde in air has been performed using both a FEP bag and the EUPHORE chamber. HCHO was observed to be the major product with a primary yield of around 65%. Glyoxal (CHOCHO) was also observed in EUPHORE with a primary yield of (22 +/- 6)%. This yield corresponds to the branching ratio ( approximately 20%) of the H-atom abstraction channel from the CH(2) group in the OH + HOCH(2)CHO reaction, the major channel ( approximately 80%) being the H-atom abstraction from the carbonyl group. The data obtained in this work, especially the first determination of the photolysis rate of glycolaldehyde under atmospheric conditions, indicate that the OH reaction and photolysis can compete as tropospheric sinks for glycolaldehyde. Since glycolaldehyde is a significant oxidation product of isoprene whereas the photolysis of glycolaldehyde is a significant source of methanol, isoprene might contribute a few percent of the global budget of methanol.  相似文献   

7.
The kinetics of the overall reaction between OH radicals and 2,3-pentanedione (1) were studied using both direct and relative kinetic methods at laboratory temperature. The low pressure fast discharge flow experiments coupled with resonance fluorescence detection of OH provided the direct rate coefficient of (2.25 ± 0.44) × 10(-12) cm(3) molecule(-1) s(-1). The relative-rate experiments were carried out both in a collapsible Teflon chamber and a Pyrex reactor in two laboratories using different reference reactions to provide the rate coefficients of 1.95 ± 0.27, 1.95 ± 0.34, and 2.06 ± 0.34, all given in 10(-12) cm(3) molecule(-1) s(-1). The recommended value is the nonweighted average of the four determinations: k(1) (300 K) = (2.09 ± 0.38) × 10(-12) cm(3) molecule(-1) s(-1), given with 2σ accuracy. Absorption cross sections for 2,3-pentanedione were determined: the spectrum is characterized by two wide absorption bands between 220 and 450 nm. Pulsed laser photolysis at 351 nm was used and the depletion of 2,3-pentanedione (2) was measured by GC to determine the photolysis quantum yield of Φ(2) = 0.11 ± 0.02(2σ) at 300 K and 1000 mbar synthetic air. An upper limit was estimated for the effective quantum yield of 2,3-pentanedione applying fluorescent lamps with peak wavelength of 312 nm. Relationships between molecular structure and OH reactivity, as well as the atmospheric fate of 2,3-pentanedione, have been discussed.  相似文献   

8.
Self-reaction of hydroxyl radicals, OH + OH → H(2)O + O (1a) and OH + OH → H(2)O(2) (1b), was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 298-834 K temperature and 1-100 bar pressure ranges (bath gas He). A heatable high-pressure flow reactor was employed. Hydroxyl radicals were prepared using reaction of electronically excited oxygen atoms, O((1)D), produced in photolysis of N(2)O at 193 nm, with H(2)O. The temporal behavior of OH radicals was monitored via transient absorption of light from a dc discharge in H(2)O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study combined with the literature data indicate that the rate constant of reaction 1a, associated with the pressure independent component, decreases with temperature within the temperature range 298-414 K and increases above 555 K. The pressure dependent rate constant for (1b) was parametrized using the Troe expression as k(1b,inf) = (2.4 ± 0.6) × 10(-11)(T/300)(-0.5) cm(3) molecule(-1) s(-1), k(1b,0) = [He] (9.0 ± 2.2) × 10(-31)(T/300)(-3.5±0.5) cm(3) molecule(-1) s(-1), F(c) = 0.37.  相似文献   

9.
The reactions of three unsaturated alcohols (linalool, 6-methyl-5-hepten-2-ol, and 3-methyl-1-penten-3-ol) with ozone and OH radicals have been studied using simulation chambers at T ~ 296 K and P ~ 760 Torr. The rate coefficient values (in cm(3) molecule(-1) s(-1)) determined for the three compounds are linalool, k(O3) = (4.1 ± 1.0) × 10(-16) and k(OH) = (1.7 ± 0.3) × 10(-10); 6-methyl-5-hepten-2-ol, k(O3) = (3.8 ± 1.2) × 10(-16) and k(OH) = (1.0 ± 0.3) × 10(-10); and 3-methyl-1-penten-3-ol, k(O3) = (5.2 ± 0.6) × 10(-18) and k(OH) = (6.2 ± 1.8) × 10(-11). From the kinetic data it is estimated that, for the reaction of O(3) with linalool, attack at the R-CH═C(CH(3))(2) group represents around (93 ± 52)% (k(6-methyl-5-hepten-2-ol)/k(linalool)) of the overall reaction, with reaction at the R-CH═CH(2) group accounting for about (1.3 ± 0.5)% (k(3-methyl-1-penten-3-ol)/k(linalool)). In a similar manner it has been calculated that for the reaction of OH radicals with linalool, attack of the OH radical at the R-CH═C(CH(3))(2) group represents around (59 ± 18)% (k(6-methyl-5-hepten-2-ol)/k(linalool)) of the total reaction, while addition of OH to the R-CH═CH(2) group is estimated to be around (36 ± 6)% (k(3-methyl-1-penten-3-ol)/k(linalool)). Analysis of the products from the reaction of O(3) with linalool confirmed that addition to the R-CH═C(CH(3))(2) group is the predominant reaction pathway. The presence of formaldehyde and hydroxyacetone in the reaction products together with compelling evidence for the generation of OH radicals in the system indicates that the hydroperoxide channel is important in the loss of the biradical [(CH(3))(2)COO]* formed in the reaction of O(3) with linalool. Studies on the reactions of O(3) with the unsaturated alcohols showed that the yields of secondary organic aerosols (SOAs) are higher in the absence of OH scavengers compared to the yields in their presence. However, even under low-NO(X) concentrations, the reactions of OH radicals with 3-methyl-1-penten-3-ol and 6-methyl-5-hepten-2-ol will make only a minor contribution to SOA formation under atmospheric conditions. Relatively high yields of SOAs were observed in the reactions of OH with linalool, although the initial concentrations of reactants were quite high. The importance of linalool in the formation of SOAs in the atmosphere requires further investigation. The impact following releases of these unsaturated alcohols into the atmosphere are discussed.  相似文献   

10.
Rate coefficients for three daytime atmospheric reactions of (Z)-3-hexenal (3HA)-photolysis (J(1)), reaction with OH radicals (k(2)), and reaction with ozone (k(3))-were measured at 760 Torr and 298 K using a 6 m(3) photochemical reaction chamber. The UV absorption cross sections (σ(3HA)(λ)) were obtained in the wavelength range 240-350 nm. The photodissociation rate of 3HA relative to that of NO(2) was measured by a solar simulator at 760 Torr and was determined to be J(1)/J(NO2) = (4.7 ± 0.4) × 10(-3). Using the obtained σ(3HA)(λ) and J(1)/J(NO2), the effective photodissociation quantum yield was calculated to be Φ(3HA) = 0.25 ± 0.06. The rate coefficient for the reaction with OH radicals was measured by the relative rate method with three reference compounds and was determined to be k(2) = (6.9 ± 0.9) × 10(-11) cm(3) molecule(-1) s(-1). The rate coefficient for the reaction with ozone was measured by an absolute method and was determined to be k(3) = (3.5 ± 0.2) × 10(-17) cm(3) molecule(-1) s(-1). Using the obtained rate coefficients, the daytime atmospheric lifetime of 3HA was estimated.  相似文献   

11.
Nitrogen trifluoride, NF(3), a trace gas of purely anthropogenic origin with a large global warming potential is accumulating in the Earth's atmosphere. Large uncertainties are however associated with its atmospheric removal rate. In this work, experimental and theoretical kinetic tools were used to study the reactions of NF(3) with three of the principal gas-phase atmospheric oxidants: O((1)D), OH and O(3). For reaction (R2) with O((1)D), rate coefficients of k(2)(212-356 K) = (2.0 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1) were obtained in direct competitive kinetics experiments, and experimental and theoretical evidence was obtained for F-atom product formation. These results indicate that whilst photolysis in the stratosphere remains the principal fate of NF(3), reaction with O((1)D) is significant and was previously underestimated in atmospheric lifetime calculations. Experimental evidence of F-atom production from 248 nm photolysis of NF(3) was also obtained, indicating that quantum yields for NF(3) destruction remain significant throughout the UV. No evidence was found for reaction (R3) of NF(3) with OH indicating that this process makes little or no contribution to NF(3) removal from the atmosphere. An upper-limit of k(3)(298 K) < 4 × 10(-16) cm(3) molecule(-1) s(-1) was obtained experimentally; theoretical analysis suggests that the true rate coefficient is more than ten orders of magnitude smaller. An upper-limit of k(4)(296 K) < 3 × 10(-25) cm(3) molecule(-1) s(-1) was obtained in experiments to investigate O(3) + NF(3) (R4). Altogether these results underpin calculations of a long (several hundred year) lifetime for NF(3). In the course of this work rate coefficients (in units of 10(-11) cm(3) molecule(-1) s(-1)) for removal of O((1)D) by n-C(5)H(12), k(6) = (50 ± 5) and by N(2), k(7) = (3.1 ± 0.2) were obtained. Uncertainties quoted throughout are 2σ precision only.  相似文献   

12.
The rate constants of the reaction between hydroxyl radical (OH?) and dimethyl sulfide (DMS) were in-vestigated by using the relative methods in air, N2, and O2. Strong influences of ground state oxygenO(3P) on DMS consumption were found by the photolysis of HONO and CH3ONO as OH?sources, and the rate constants obtained in these systems varied significantly. The rate constants of the reaction between DMS and OH?(generated by photolysis of H2O2) at room temperature were 8.56×10-12, 11.31×10-12, and 4.50×10-12cm3/(molecule?s), in air, O2, and N2, respectively. The temperature dependence of the rateconstants for OH? with DMS over the temperature range of 287-338 K was also investigated in nitrogen and air, and the Arrhenius expression was obtained as follows: kair=(7.24±0.28)×10-13exp(770.7±97.2)/T,kN2=(3.40±0.15)×10-11exp-(590.3±165.9)/T.  相似文献   

13.
Fluorinated alcohols, such as 2,2,3,3-tetrafluoropropanol (TFPO, CHF(2)CF(2)CH(2)OH) and 2,2,3,3,3-pentafluoropropanol (PFPO, CF(3)CF(2)CH(2)OH), can be potential replacements of hydrofluorocarbons with large global warming potentials, GWPs. IR absorption cross sections for TFPO and PFPO were determined between 4000 and 500 cm(-1) at 298 K. Integrated absorption cross sections (S(int), base e) in the 4000-600 cm(-1) range are (1.92 ± 0.34) × 10(-16) cm(2) molecule(-1) cm(-1) and (2.05 ± 0.50) × 10(-16) cm(2) molecule(-1) cm(-1) for TFPO and PFPO, respectively. Uncertainties are at a 95% confidence level. Ultraviolet absorption spectra were also recorded between 195 and 360 nm at 298 K. In the actinic region (λ > 290 nm), an upper limit of 10(-23) cm(2) molecule(-1) for the absorption cross sections (σ(λ)) was reported. Photolysis in the troposphere is therefore expected to be a negligible loss for these fluoropropanols. In addition, absolute rate coefficients for the reaction of OH radicals with CHF(2)CF(2)CH(2)OH (k(1)) and CF(3)CF(2)CH(2)OH (k(2)) were determined as a function of temperature (T = 263-358 K) by the pulsed laser photolysis/laser induced fluorescence (PLP-LIF) technique. At room temperature, the average values obtained were k(1) = (1.85 ± 0.07) × 10(-13) cm(3) molecule(-1) s(-1) and k(2) = (1.19 ± 0.03) × 10(-13) cm(3) molecule(-1) s(-1). The observed temperature dependence of k(1)(T) and k(2)(T) is described by the following expressions: (1.35 ± 0.23) × 10(-12) exp{-(605 ± 54)/T} and (1.36 ± 0.19) × 10(-12) exp{-(730 ± 43)/T} cm(3) molecule(-1) s(-1), respectively. Since photolysis of TFPO and PFPO in the actinic region is negligible, the tropospheric lifetime (τ) of these species can be approximated by the lifetime due to the homogeneous reaction with OH radicals. Global values of τ(OH) were estimated to be of 3 and 4 months for TFPO and PFPO, respectively. GWPs relative to CO(2) at a time horizon of 500 years were calculated to be 8 and 12 for TFPO and PFPO, respectively. Despite the higher GWP relative to CO(2), these species are not expected to significantly contribute to the greenhouse effect in the next decades since they are short-lived species and will not accumulate in the troposphere even as their emissions grow up.  相似文献   

14.
Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).  相似文献   

15.
FTIR-smog chamber techniques were used to study the products and mechanisms of the Cl atom and OH radical initiated oxidation of trans-3,3,3-trifluoro-1-chloro-propene, t-CF(3)CH=CHCl, in 700 Torr of air or N(2)/O(2) diluent at 296 ± 2 K. The reactions of Cl atoms and OH radicals with t-CF(3)CH=CHCl occur via addition to the >C=C< double bond; chlorine atoms add 15 ± 5% at the terminal carbon and 85 ± 5% at the central carbon, OH radicals add approximately 40% at the terminal carbon and 60% at the central carbon. The major products in the Cl atom initiated oxidation of t-CF(3)CH=CHCl were CF(3)CHClCHO and CF(3)C(O)CHCl(2), minor products were CF(3)CHO, HCOCl and CF(3)COCl. The yields of CF(3)C(O)CHCl(2), CF(3)CHClCOCl and CF(3)COCl increased at the expense of CF(3)CHO, HCOCl and CF(3)CHClCHO as the O(2) partial pressure was increased over the range 10-700 Torr. Chemical activation plays a significant role in the fate of CF(3)CH(O)CHCl(2) and CF(3)CClHCHClO radicals. In addition to reaction with O(2) to yield CF(3)COCl and HO(2) the major competing fate of CF(3)CHClO is Cl elimination to give CF(3)CHO (not C-C bond scission as previously thought). As part of this study k(Cl + CF(3)C(O)CHCl(2)) = (2.3 ± 0.3) × 10(-14) and k(Cl + CF(3)CHClCHO) = (7.5 ± 2.0) × 10(-12) cm(3) molecule(-1) s(-1) were determined using relative rate techniques. Reaction with OH radicals is the major atmospheric sink for t-CF(3)CH=CHCl. Chlorine atom elimination giving the enol CF(3)CH=CHOH appears to be the sole atmospheric fate of the CF(3)CHCHClOH radicals. The yield of CF(3)COOH in the atmospheric oxidation of t-CF(3)CH=CHCl will be negligible (<2%). The results are discussed with respect to the atmospheric chemistry and environmental impact of t-CF(3)CH=CHCl.  相似文献   

16.
The atmospheric chemistry of two C(4)H(8)O(2) isomers (methyl propionate and ethyl acetate) was investigated. With relative rate techniques in 980 mbar of air at 293 K the following rate constants were determined: k(C(2)H(5)C(O)OCH(3) + Cl) = (1.57 ± 0.23) × 10(-11), k(C(2)H(5)C(O)OCH(3) + OH) = (9.25 ± 1.27) × 10(-13), k(CH(3)C(O)OC(2)H(5) + Cl) = (1.76 ± 0.22) × 10(-11), and k(CH(3)C(O)OC(2)H(5) + OH) = (1.54 ± 0.22) × 10(-12) cm(3) molecule(-1) s(-1). The chlorine atom initiated oxidation of methyl propionate in 930 mbar of N(2)/O(2) diluent (with, and without, NO(x)) gave methyl pyruvate, propionic acid, acetaldehyde, formic acid, and formaldehyde as products. In experiments conducted in N(2) diluent the formation of CH(3)CHClC(O)OCH(3) and CH(3)CCl(2)C(O)OCH(3) was observed. From the observed product yields we conclude that the branching ratios for reaction of chlorine atoms with the CH(3)-, -CH(2)-, and -OCH(3) groups are <49 ± 9%, 42 ± 7%, and >9 ± 2%, respectively. The chlorine atom initiated oxidation of ethyl acetate in N(2)/O(2) diluent gave acetic acid, acetic acid anhydride, acetic formic anhydride, formaldehyde, and, in the presence of NO(x), PAN. From the yield of these products we conclude that at least 41 ± 6% of the reaction of chlorine atoms with ethyl acetate occurs at the -CH(2)- group. The rate constants and branching ratios for reactions of OH radicals with methyl propionate and ethyl acetate were investigated theoretically using transition state theory. The stationary points along the oxidation pathways were optimized at the CCSD(T)/cc-pVTZ//BHandHLYP/aug-cc-pVTZ level of theory. The reaction of OH radicals with ethyl acetate was computed to occur essentially exclusively (~99%) at the -CH(2)- group. In contrast, both methyl groups and the -CH(2)- group contribute appreciably in the reaction of OH with methyl propionate. Decomposition via the α-ester rearrangement (to give C(2)H(5)C(O)OH and a HCO radical) and reaction with O(2) (to give CH(3)CH(2)C(O)OC(O)H) are competing atmospheric fates of the alkoxy radical CH(3)CH(2)C(O)OCH(2)O. Chemical activation of CH(3)CH(2)C(O)OCH(2)O radicals formed in the reaction of the corresponding peroxy radical with NO favors the α-ester rearrangement.  相似文献   

17.
The rate coefficients for reactions of OH with ethanol and partially deuterated ethanols have been measured by laser flash photolysis/laser-induced fluorescence over the temperature range 298-523 K and 5-100 Torr of helium bath gas. The rate coefficient, k(1.1), for reaction of OH with C(2)H(5)OH is given by the expression k(1.1) = 1.06 × 10(-22)T(3.58)?exp(1126/T) cm(3) molecule(-1) s(-1), and the values are in good agreement with previous literature. Site-specific rate coefficients were determined from the measured kinetic isotope effects. Over the temperature region 298-523 K abstraction from the hydroxyl site is a minor channel. The reaction is dominated by abstraction of the α hydrogens (92 ± 8)% at 298 K decreasing to (76 ± 9)% with the balance being abstraction at the β position where the errors are 2σ. At higher temperatures decomposition of the CH(2)CH(2)OH product from β abstraction complicates the kinetics. From 575 to 650 K, biexponential decays were observed, allowing estimates to be made for k(1.1) and the fractional production of CH(2)CH(2)OH. Above 650 K, decomposition of the CH(2)CH(2)OH product was fast on the time scale of the measured kinetics and removal of OH corresponds to reaction at the α and OH sites. The kinetics agree (within ±20%) with previous measurements. Evidence suggests that reaction at the OH site is significant at our higher temperatures: 47-53% at 865 K.  相似文献   

18.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

19.
The OH-initiated oxidation of acetone in aqueous solution is investigated because of its potential implications in atmospheric chemistry. The UV-spectrum of the transient acetonylperoxy radical was measured. Two characteristic absorption bands of the acetonylperoxy radical spectrum are found in the 220-400 nm wavelength region. The rate constant for the recombination reaction of the acetonylperoxy radical was determined as a function of temperature for the first time in aqueous solution with k(rec,298?K) = (7.3 ± 1.3) × 10(8) M(-1) s(-1), E(A) = 4.5 ± 3.3 kJ mol(-1), and A = (4.7 ± 2.7) × 10(9) M(-1) s(-1). Furthermore, kinetic investigations of the OH-initiated oxidation of methylglyoxal and pyruvic acid were performed with the following results: for methylglyoxal, k(second) = (6.2 ± 0.2) × 10(8) M(-1) s(-1), E(A) = 12 ± 2 kJ mol(-1), and A = (7.8 ± 0.2) × 10(9) M(-1) s(-1); for pyruvic acid (pH = 0), k(second) = (3.2 ± 0.6) × 10(8) M(-1) s(-1), E(A) = 15 ± 5 kJ mol(-1), and A?= (1.1 ± 0.1) × 10(11) M(-1) s(-1); for pyruvate (pH = 6), k(second) = (7.1 ± 2.4) × 10(8) M(-1) s(-1), E(A) = 25 ± 19 kJ mol(-1), and A = (1.5 ± 0.4) × 10(13) M(-1) s(-1). Quantitative product studies were done as a function of the number of laser photolysis pulses for acetone and its oxidation products methylglyoxal, hydroxyacetone, pyruvic acid, acetic acid, and oxalic acid. After the recombination reaction of acetonylperoxy radicals, there are two possible decomposition reactions where the primary products methylglyoxal and hydroxyacetone are formed. From product analysis after a single photolysis laser shot, the ratio of the main product-forming reactions was determined as (A) 30% and (B) 56% for the methylglyoxal formation via channel A to yield two molecules of methylglyoxal and channel B to yield one molecule of methylglyoxal and one molecule of hydroxyacetone. The remaining product can be ascribed to channel C, the radical-retaining channel forming alkoxy radicals with a yield of 14%. Pyruvic acid and acetic acid were found to be the major intermediates estimated with concentrations in the same order of magnitude and a similar time profile, indicating that acetic acid is also a possible oxidation product of methylglyoxal.  相似文献   

20.
Using a relative rate technique, kinetic studies on the gas-phase reactions of OH radicals, ozone, and NO(3) radicals with iso-butyl vinyl ether (iBVE) and tert-butyl vinyl ether (tBVE) have been performed in a 405 L Duran glass chamber at (298 ± 3) K and atmospheric pressure (750 ± 10 Torr) in synthetic air using in situ FTIR spectroscopy to monitor the reactants. The following rate coefficients (in units of cm(3) molecule(-1) s(-1)) have been obtained: (1.08 ± 0.23) × 10(-10) and (1.25 ± 0.32) × 10(-10) for the reactions of OH with iBVE and tBVE, respectively; (2.85 ± 0.62) × 10(-16) and (5.30 ± 1.07) × 10(-16) for the ozonolysis of iBVE and tBVE, respectively; and (1.99 ± 0.56) × 10(-12) and (4.81 ± 1.01) × 10(-12) for the reactions of NO(3) with iBVE and tBVE, respectively. The rate coefficients for the NO(3) reactions are first-time determinations. The measured rate coefficients are compared with estimates using current structure activity relationship (SAR) methods and the effects of the alkoxy group on the gas-phase reactivity of the alkyl vinyl ethers toward the oxidants are compared and discussed. In addition, estimates of the tropospheric lifetimes of iBVE and tBVE with respect to their reactions with OH, ozone, and NO(3) for typical OH radical, ozone, and NO(3) radical concentrations are made, and their relevance for the environmental fate of compounds is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号