首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Brazilian coal power plant generates a waste composed by the fly and bottom ashes produced from coal combustion and by a spent sulfated lime generated after SO2 capture from combustion gases. This work presents a study of the early stages of the hydration of composites formed by this waste and a type II Portland cement, which will be used for CO2 capture. The cement substitution degrees in the evaluated composites were 10, 20, 30 and 40%, and the effect of the coal power unit waste on the hydration reaction was analyzed on real time by NCDTA, during the first 40 h of hydration. The results show that the higher is the substitution degree, the higher is the retarding effect on the cement hydration process. Actually, by respective thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis on initial cement mass basis, this effect is caused by double exchange reactions among Ca and Mg components of the waste, during the first 4 h of hydration, which promote a much higher exothermic effect in the NCDTA curve, simultaneously to respective induction periods. The pozzolanic reactions, due to the presence of the waste silica and alumina containing amorphous phases, consume part of the original Ca(OH)2 content existent in the waste in the case of 30 and 40% substituted pastes, and also from part of the Ca(OH)2 produced in cement hydration reactions, in the case of the 10 and 20% substituted pastes.  相似文献   

2.
《印度化学会志》2021,98(4):100050
The objective of this study was to investigate the feasibility of application of waste phosphate aluminum slag (PAS) for cement manufacture. To recycle waste PAS and minimize adverse effects on cement hydration induced by phosphate, NH4OH was used to purify PAS. X-ray diffraction (XRD) analysis was used to determine to confirm the removal of harmful phosphate. The effect of PAS on the hydration product composition, heat release and compressive strength was also investigated. The results demonstrated that NH4OH was effective in removing harmful AlPO4 in PAS and 10% NH4OH was considered as the optimal treatment concentration. In addition, the purification of NH4OH alleviated the delay in cement hydration caused by AlPO4 and the heat release curve of purified PAS (PPAS) cement tends to that of OPC. Moreover, the compressive strength of PPAS mortar at 28 days was 49.4 ​MPa, which is 18% higher than the compressive strength of PAS mortar. PAS purified by NH4OH can be applied to cement manufacturing.  相似文献   

3.
A study of the immobilization for226Ra waste has been carried out. Cement-based concrete was used as a matrix for the solidification of radium waste. The experimental results show that the cement mixture with water/cement between 0.46–0.54 has higher strengh (above 20 MPa), and the compressive strength was not reduced by addition of 1% barite or the radium waste (RaSO4) into the concrete solid.Sponsored by the National Nuclear Corporation of China.  相似文献   

4.
A simple, environmentally friendly process was developed for surface hydrophobization of cellulose-rich waste to improve their compatibility with recycled polypropylene (rPP), helping reduce costs while recycling environmentally problematic waste such as solid olive waste (also called olive pomace). In this study, an improvement of the interfacial bonding strength between the hydrophilic waste particles and the hydrophobic matrix was achieved by surface hydrophobization of the waste using a ring-opening polymerization reaction of epoxidized soy-bean oil (ESBO) with SnCl2 as a catalyst. The treatment on cellulose based filter paper led to a contact angle of 128°. The composite containing treated olive pomace has shown an increase in the elongation of 92% and an increase in the stress at yield of 15%, indicating improved compatibility.  相似文献   

5.
In the present work, a Portland cement blended with calcium carbonate is being used to study the solidification/stabilization (S/S) of a Brazilian tanning waste arising from leather production. Chromium is the element of greatest concern in this waste, but the waste also contains a residual organic material. Using thermogravimetry (TG) and derivative thermogravimetry (DTG) to identify and quantify the main hydrated phases present in the pastes, this paper presents a comparative study between the effects of Wyoming and Organophilic bentonites (B and OB) on cement hydration. Samples containing combinations of cement, B, OB and waste have been subjected to thermal analysis after different setting times during the first 28 days of the waste S/S process. Both bentonites affect the cement hydration, with no significant differences in hydration degree after 1 week. This work shows further examples of the great utility of thermal analysis techniques in the study of very complex systems containing both crystalline and amorphous mineral materials as well as organics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The effect of spent FCC catalyst on early hydration (up to 48?h) of high aluminate cement (Al2O3 >70%) at different ambient temperatures (10, 20, and 30?°C) was investigated. Cement pastes with constant ratio of water/binder?=?0.35 (binder?=?cement?+?addition) and containing 0, 5, 10, and 15% mass of addition as replacement of cement were studied. The hydration kinetics was determined by calorimetric measurements and the structure of hardened binders after 2?days of curing at an appropriate temperature was also investigated using X-ray, SEM, and thermal analysis methods. Due to the fact that hydration of aluminate cements is highly sensitive to temperature conditions as well as certain changes of temperature are inevitable in practice, the evaluation of the impact of the waste catalyst addition in such conditions is justified. On the basis of obtained results, it was stated that the temperature determines the early hydration of high aluminate cement and decides about the influence of waste aluminosilicate. The introduction of the discussed addition has a big impact on the kinetics of cement hydration closely related to the curing temperature. The presence of spent catalyst accelerates the hydration at the temperatures of 20 and 30?°C, but at the temperature of 10?°C this waste aluminosilicate acts as a retarding agent. The effect of the addition on the microstructure of hardened binders after 48?h of hydration is rather insignificant, especially at 20?°C, compared to the influence of the temperature on hydration. At the temperature of 10?°C, a formation of low amount of C2AH8 can be observed because of the presence of spent catalyst, while at the temperature of 30?°C the introduction of the mineral addition prevents the hydrogarnet formation.  相似文献   

7.
Summary Organic substances present in radioactive waste lower the sorption of metal ions at the high pH in cement matrices and, hence, enhance their possible migration. The aim of this study was to develop a method to compare organic substances or their degradation products with respect to what extent they affect metal sorption. Batch sorption studies were performed with cement or TiO2 as solid phase and Eu(III) as a model element for trivalent lanthanides and actinides at pH 12.5 (representative of a cement waste matrix during the first approximately 100,000 years). Different kinds of ligands were studied in a broad concentration range, e.g., organic acids, cement additives, cleaning agents and degradation products from ion-exchange resin.  相似文献   

8.
The so-called pozzolanic activity of waste catalysts from fluidised cracking was investigated. For this purpose a series of cement mixtures with this waste material were prepared and subsequently the pastes and mortars were produced. Waste aluminosilicate catalyst was used both in raw form and after grinding in a ball mill for 60 min. The hydrating mixtures were subjected to the calorimetric measurements in a non-isothermal/non-adiabatic calorimeter. After an appointed time of curing the hydrating materials were studied by thermal analysis methods (TG, DTG, DTA). The pozzolanic activity factors were determined, basing on the compressive strength data. The increased activity of cement — ground pozzolana systems has been thus proved. An accelerated Ca(OH)2 consumption as well as higher strength were found for materials containing ground waste catalyst, as compared to those, mixed with the raw one. Thus grinding was also proved to result in mechanical activation in the case of the waste catalyst from fluidised cracking. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Cementitious systems based on portland cement are used for immobilization of toxic and hazardous wastes. The addition of waste material may impact the hydration reaction in cement matrix and consequently the setting and hardening process. The progress of reaction can be monitored by heat evolution measurements and the calorimetric results can indicate the declination from standard behaviour.In this study the microcalorimetry was used to evaluate the heat output during the hydration of cements in the presence of different chromium containing salts, viz. CrCl3, Cr2(SO4)3, Na2CrO4 and K2CrO4.  相似文献   

10.
The aim of this paper is to study the solidification/stabilization potential of cementitious matrices on the immobilization of Zn(II) before its disposal into the environment by determining the mechanisms of interaction between the Zn(II) ions and the binder. The results of structural and mineralogical characterization of cement pastes formed with different amounts of immobilized Zn(II) ions are presented and the study includes results from thermogravimetric analysis (TG), scanning electron microscopy, X-ray diffraction, and leaching performance. Zn(II) ions delay the hydration reaction of Portland cement due to the formation of mainly CaZn2(OH)6·2H2O , as well as Zn5(CO3)2(OH)6, Zn(OH)2, and ZnCO3 in minor proportion. Correlations between total mass loss in TG analysis and leached Zn(II) ions in long-term curing pastes have been obtained. This result is important because in a preliminary approach from a TG on an early-aged cement paste containing Zn(II), it could be possible to perform an estimation of the amount of Zn(II) ions that could be leached, thus avoiding costly and time-consuming tests.  相似文献   

11.
Reactivity of cement mixtures containing waste glass using thermal analysis   总被引:1,自引:0,他引:1  
A laboratory study was undertaken to compare the performance of waste glass as a supplementary cementitious material (SCM) to traditional SCMs at the same particle size and level of replacement in both high and low alkali cement paste. The consumption of Ca(OH)2 as measured by differential thermal analysis (DTA) is used as an indicator of reactivity. The DTA results of the pastes aged to 150 days are presented, and indicate that glass reactivity is similar to ground-granulated blast furnace slag (GGBFS) and lower than silica fume (SF) at comparable particle sizes. Alkali–silica reaction (ASR) is not present for particle sizes below 100 μm, but is induced by agglomeration of the glass particles and is observed by fluorescence in optical microscopy images. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) are used to compare the microstructural properties of the SCMs and measure the chemical composition of the reaction products. The alkalinity of the cement was found to influence the nature of composition as observed by thermal analysis, and the temperatures at which their reactions occurred.  相似文献   

12.
This article demonstrates the possibility of producing alkali-activated hybrid cements based on fly ash (FA), and construction and demolition wastes (concrete waste, COW; ceramic waste, CEW; and masonry waste, MAW) using sodium sulfate (Na2SO4) (2–6%) and sodium carbonate (Na2CO3) (5–10%) as activators. From a mixture of COW, CEW, and MAW in equal proportions (33.33%), a new precursor called CDW was generated. The precursors were mixed with ordinary Portland cement (OPC) (10–30%). Curing of the materials was performed at room temperature (25 °C). The hybrid cements activated with Na2SO4 reached compressive strengths of up to 31 MPa at 28 days of curing, and the hybrid cements activated with Na2CO3 yielded compressive strengths of up to 22 MPa. Based on their mechanical performance, the optimal mixtures were selected: FA/30OPC-4%Na2SO4, CDW/30OPC-4%Na2SO4, FA/30OPC-10%Na2CO3, and CDW/30OPC-10%Na2CO3. At prolonged ages (180 days), these mixtures reached compressive strength values similar to those reported for pastes based on 100% OPC. A notable advantage is the reduction of the heat of the reaction, which can be reduced by up to 10 times relative to that reported for the hydration of Portland cement. These results show the feasibility of manufacturing alkaline-activated hybrid cements using alternative activators with a lower environmental impact.  相似文献   

13.
Thermal analysis was first used to investigate the pattern of dissociation of hydrated ordinary Portland cement. Portlandite (Ca(OH)2) decomposes at about 500°C. This was confirmed by kinetic calculations. Thermal analysis was then performed to establish the effect of varying the cement content on the percent mass loss associated with the decomposition of Ca(OH)2 in cement mortar cured for 28 days. An increasing relation was obtained. Standard concrete cubes were then prepared with cement contents ranging from 200 to 450 kg m-3. The loss in mass on heating, up to 750°C, of concrete samples cured for 28 days was then related to the cement content in concrete. The relation obtained was tested for concrete cubes of known cement content and found to be in better agreement than the results obtained by conventional chemical analysis. This method can be used for an approximate determination of the cement content in concrete. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
α-Hydroxy carboxylate ligands like gluconate or polyaminocarboxylate ligands such as ethylenediaminetetraacetate (EDTA) are frequently used in decontamination procedures at nuclear power plants. The presence of these organic substances among nuclear wastes could enhance the solubility of actinides by forming soluble complexes. Thermodynamic data on the stability of gluconate and EDTA with actinides are essential to predict their increase in mobility, especially in high pH systems characteristic of cement environments of a nuclear waste repository. In this work, the solubility of thorium oxyhydroxide in the presence of gluconate and EDTA has been studied. The results highlight the key role of these organics in increasing the solubility of thorium at pHc = 12. The presence of calcium at concentrations below 10?2 mol·dm?3 (characteristic of cement porewaters corresponding to cement compositions at the second degradation stage) does not seem to affect significantly the thorium solubility under the studied conditions.  相似文献   

15.
The thermal stability of solidified NaNO3 salts in bitumen and cement has been investigated for safety considerations in the field of solidification of radioactive waste. The thermal decomposition of bitumen and cement in presence of NaNO3 in a temperature range 22–650°C has been studied. The fraction decomposed of the pure samples and mixtures showed slow linear reactions followed by acceleratory and decay stages. Data are analyzed according to both Freeman-Carroll and Coats-Redfern kinetics to evaluate the activation energy and the order of reactions of all mixtures. It is found that the activation energies of bitumen and cement were 594 and 203 kJ mol-1, respectively. The order of reactions of bitumen and cement was 2 and 4, respectively. The addition of NaNO3 shortens the duration of the induction period in all mixtures. It was concluded that solidification of radioactive waste containing NaNO3 in bitumen and cement should be applied in the temperature range 22–300°C. At temperature higher than300°C solidification should be in cement. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The kinetics and even the mechanism of cement reaction with water can be successfully investigated by use of microcalorimetry. In this study this method was applied to follow the hydration of the new family of portland cements containing C12A7 * and C11A7·CaF2 addition as well as special cement with C3A replacement by calcium sulphoaluminate. It has been found that C11A7·CaF2 acted as hydration retarder. The heat evolution curves for C12A7 containing samples without CaF2 are very similar to those for the reference portland cement samples. XRD and SEM studies confirm the results described above, relating to the retardation of alite hydration. The process is positively modified by the addition of anhydrite. In the presence of calcium sulphoaluminate (4CaO·3Al2O3·SO3) the hydration at early stage occurs with the rapid formation of large amount of the ettringite phase. The calcium fluoride acts as a set retarder. The full compatibility of calorimetry with SEM and XRD results should be underlined. In cement chemistry the following notation is used:C=CaO,A=Al2O3,S=SiO2,H=H2O etc. for the main oxide constituents of portland cement clinker and hydrates.  相似文献   

17.
The shelf life of cement and cement-based dry mixtures is often determined by ageing of such materials. The ageing is the result of interactions between cement and other components of cementitious mixtures with moisture as well as with CO2 from the atmosphere. In this work, the ageing behaviour of calcium aluminate cement and its mixtures with additives of microsilica, fluidized catalytic cracking catalyst waste and ground quartz sand were investigated. The ageing was achieved by storing cement and its mixtures in a climatic chamber for 7 and 14 days at 95% relative humidity and 20 ± 1 °C temperature. Applying thermal analysis, XRD analysis as well as scanning electronic microscopy, it was established that hydration of the cement minerals takes place along with carbonation during the ageing process of cement and its mixtures. The quantities of the products formed during ageing and their crystallinity depend on the nature of additives and the duration of ageing. When applying the method of calorimetric analysis, the influence of ageing on the kinetics of hydration of cement and as well as of its mixtures with the additives used in the work has been established.  相似文献   

18.
Pozzolans play an important role in the industry of cement and concrete. They increase the mechanical strength of cement matrices and can be used to decrease the amount of cement in concrete mixtures, thus decreasing the final economic and environmental cost of production; also, as some of them are byproducts of industrial processes (such as silica fume and fly ash) and their use can be seen as a solution for some residues, that otherwise would be disposed as a waste. Pozzolans fixate the Ca(OH)2 generated during cement’s hydration reactions to form calcium silicate hydrates (C–S–H), calcium aluminate hydrates (C–A–H), or calcium aluminosilicate hydrates (C–A–S–H), depending on the nature of the pozzolan. Traditionally, the pozzolanic activity is identified using the Ca(OH)2 fixation percentage which is quantified by thermogravimetric (TG) analysis, using the mass loss due to the Ca(OH)2 dehydroxylation around 500 °C. An alternative method to identify pozzolanic activity at lower temperatures using a standard issue moisture analyzer (MA) is presented in this paper, using the mass loss due to hydrate’s dehydration generated by pozzolans in the pozzolanic reaction. Samples of Ca(OH)2 blended with different pozzolans were prepared and tested at different hydration ages. Using TG analysis and an MA, a good correlation was found between the total mass loss of the same sample, using the two methods at the same temperature. It was concluded that the MA method can be considered a less expensive and less time-consuming alternative to identify pozzolanic activity of siliceous or aluminosiliceous materials.  相似文献   

19.
The amount of zinc in the clinker or in the secondary raw materials has been increasing in recent years. Zinc can get to Portland cement from solid waste or tires which are widely used as a fuel for burning in a rotary kiln. The aim of this work was to determine the effect of zinc on Portland cement hydration. This effect was studied by isothermal and isoperibolic calorimetry. Both calorimetry methods are suitable for measurements during the first days of hydration. Isoperibolic calorimetry monitors hydration process in real-life conditions, while isothermal calorimetry does it at a defined chosen temperature. Zinc was added to the cement in the form of two soluble salts of Zn(NO3)2, ZnCl2 and a poorly soluble compound ZnO. The concentration of zinc added was chosen as 0.05, 0.1, 0.5 and 1 mass%. The results show that increasing amounts of zinc ions in cement pastes lead to hydration retardation and reduce both the maximum temperature and the maximum heat flow due to the retarding effect of zinc. The newly formed compounds during hydration were identified by X-ray diffraction method.  相似文献   

20.
This paper reports the influence of submicron hydrophilic fibers on the hydration and microstructure of Portland cement paste. Submicron fibrillated cellulose (SMC) fibers was prepared by the acid hydrolysis of cotton fibers in H2SO4 solution (55% v/v) for 1.5 h at a temperature of 50 °C. The SMC fibers were added into cement with a dosage of 0.03 wt.%, and the effect of SMC on the hydration and microstructure of cement paste was investigated by calorimeter analysis, XRD, FT-IR, DSC-TG, and SEM. Microcrystalline cellulose (MCC) fibers were used as the contrast admixture with the same dosage in this study. The results show that the addition of SMC fibers can accelerate the cement hydration rate during the first 20 h of the hydration process and improve the hydration process of cement paste in later stages. These results are because the scale of SMC fibers more closely matches the size of the C-S-H gel compared to MCC fibers, given that the primary role of the SMC is to provide potential heterogeneous nucleation sites for the hydration products, which is conducive to an accelerated and continuous hydration reaction. Furthermore, the induction and bridging effects of the SMC fibers make the cement paste microstructure more homogeneous and compact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号