首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A class of universal relations for isotropic elastic materials is described by the tensor equationTB = BT. This simple rule yields at most three component relations which are the generators of many known universal relations for isotropic elasticity theory, including the well-known universal rule for a simple shear. Universal relations for four families of nonhomogeneous deformations known to be controllable in every incompressible, homogeneous and isotropic elastic material are exhibited. These same universal relations may hold for special compressible materials. New universal relations for a homogeneous controllable shear, a nonhomogeneous shear, and a variable extension are derived. The general universal relation for an arbitrary isotropic tensor function of a symmetric tensor also is noted.  相似文献   

2.
Experimental data for simple tension suggest that there is a power–law kinematic relationship between the stretches for large classes of slightly compressible (or almost incompressible) non-linearly elastic materials that are homogeneous and isotropic. Here we confine attention to a particular constitutive model for such materials that is of generalized Varga type. The corresponding incompressible model has been shown to be particularly tractable analytically. We examine the response of the slightly compressible material to some nonhomogeneous deformations and compare the results with those for the corresponding incompressible model. Thus the effects of slight compressibility for some basic nonhomogeneous deformations are explicitly assessed. The results are fundamental to the analytical modeling of almost incompressible hyperelastic materials and are of importance in the context of finite element methods where slight compressibility is usually introduced to avoid element locking due to the incompressibility constraint. It is also shown that even for slightly compressible materials, the volume change can be significant in certain situations.   相似文献   

3.
Radial deformations of an infinite medium surrounding a traction-free spherical cavity are considered. The body is composed of an isotropic, incompressible elastic material and is subjected to a uniform pressure at infinity. The possibility of void collapse (i.e. the void radius becoming zero at a finite value of the applied stress) is examined. This does not occur in all materials. The class of materials that do exhibit this phenomenon is determined, and for such materials, an explicit expression for the value of the applied pressure at which collapse occurs is derived. The stability of the deformation and the influence of a finite outer radius are also considered. The results are illustrated for a particular class of power-law materials. In certain respects, the present results for void collapse are complementary to Ball (1982)'s results for cavitation in an incompressible elastic material.Some brief observations on void collapse in compressible materials are made. The collapse of a void under non-symmetric conditions is also discussed by utilizing a solution obtained by Varley and Cumberbatch (1977, 1980).The results reported here were obtained in the course of an investigation supported in part by the U.S. Army Research Office.  相似文献   

4.
Constitutive models are proposed for compressible isotropic hyperelastic materials that reflect limiting chain extensibility. These are generalizations of the model proposed by Gent for incompressible materials. The goal is to understand the effects of limiting chain extensibility when the compressibility of polymeric materials is taken into account. The basic homogeneous deformation of simple tension is considered and simple closed-form relations for the deformation characteristics are obtained for slightly compressible materials. An explicit first-order approximation is obtained for the lateral contraction and for the Poisson function in terms of the axial extension which is shown to be valid for each of two specific compressible versions of the Gent model. One of the main results obtained is that the effect of limiting chain extensibility is to stiffen the material relative to the neo-Hookean compressible case. Mathematics Subject Classifications (2000) 74B20, 74G55.  相似文献   

5.
Local universal relations are relations between stress and kinematic variables which hold for all materials of a particular class irrespective of specific material parameters. A method is developed for obtaining local universal relations for most first gradient materials. The currently known local universal relations for isotropic elastic materials have been extended to all isotropic first gradient materials under constant step deformation histories and have also been extended to all isotropic first gradient materials undergoing arbitrary time dependent triaxial extensions along fixed material directions. It has been shown that universal relations exist for some anisotropic materials. A set of pseudo-universal relations has been obtained for anisotropic elastic materials which can be used to decouple the material functions. These pseudo-universal relations contain some, but not all, material functions. A global universal relation has been developed for the extension and torsion of an isotropic cylindrical shaft which holds for all incompressible first gradient materials.  相似文献   

6.
The problem of instability of a hyperelastic, thick-walled cylindrical tube was first studied by Wilkes [1] in 1955. The solution was formulated within the framework of the theory of small deformations superimposed on large homogeneous deformations for the general class of incompressible, isotropic materials; and results for axially symmetrical buckling were obtained for the neo-Hookean material. The solution involves a certain quadratic equation whose characteristic roots depend on the material response functions. For the neo-Hookean material these roots always are positive. In fact, here we show for the more general Mooney–Rivlin material that these roots always are positive, provided the empirical inequalities hold. In a recent study [2] of this problem for a class of internally constrained compressible materials, it is observed that these characteristic roots may be real-valued, pure imaginary, or complex-valued. The similarity of the analytical structure of the two problems, however, is most striking; and this similarity leads one to question possible complex-valued solutions for the incompressible case. Some remarks on this issue will be presented and some new results will be reported, including additional results for both the neo-Hookean and Mooney–Rivlin materials. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The three-dimensional elastic problems in finite deformations are not known to have been analyzed by the usual stress function and displacement function. By applying Hasegava's presentation and Adkins perturbation method, we propose a new analytical method for three-dimensional elastic problems for compressible materials and incompressible materials, using the displacement function for axisymmetrical elastic problems in finite deformations with surface force or body force. Further, this analytical method is examined by two simple examples.  相似文献   

8.
The Ogden model for an incompressible isotropic hyperelastic material is versatile enough to match complicated data for rubber-like materials at large deformations. However, the tensorial expression for the Cauchy stress in the Ogden model requires determination of the eigenvalues and eigenvectors of the left Cauchy-Green deformation tensor \(\mathbf{B}\). The objective of this paper is to propose an invariant-based Ogden-type model for isotropic incompressible hyperelastic materials. The strain energy function in this new model depends on classical invariants of \(\mathbf{B}\) and the Cauchy stress tensor can be expressed directly in terms of the tensor \(\mathbf{B}\) without need for its spectral form. Examples show that this new Ogden-type model retains the versatility of the original Ogden model in characterizing material response.  相似文献   

9.
Universal quasi-static motions for a class of incompressible, viscoelastic materials of differential type are examined. These time dependent motions are similar to corresponding static universal deformations well-known for incompressible, isotropic elastic materials. General details are illustrated for the pure torsion problem, and specific results and physical effects are provided for the viscoelastic Mooney-Rivlin model.  相似文献   

10.
The phenomenon of surface instability of an isotropic half-space under biaxial plane stress is studied for compressible elastic materials in finite strain. Euler's method is used to derive the general form of the stability criterion, and analytical details are exhibited by special application to the class of hyperelastic Hadamard materials in two complementary cases: (i) the full solution is derived for the compressible, neo-Hookean members, and (ii) the plane deformation solution is provided for every isotropic, elastic material and specific results are presented for the full Hadamard class. Results appropriate to incompressible Mooney-Rivlin materials are herein obtained as special limit cases. Several theorems are established and some of the conclusions are illustrated graphically.  相似文献   

11.
A new general constitutive model in terms of the principal stretches is proposed to reflect limiting chain extensibility resulting in severe strain-stiffening for incompressible, isotropic, homogeneous elastic materials. The strain-energy density involves the logarithm function and has the general Valanis–Landel form. For specific functions in the Valanis–Landel representation, we obtain particular strain-energies, some of which have been proposed in the recent literature. The stress–stretch response in some basic homogeneous deformations is described for these particular strain-energy densities. It is shown that the stress response in these deformations is similar to that predicted by the Gent model involving the first invariant of the Cauchy–Green tensor. The models discussed here depend on both the first and second invariants.   相似文献   

12.
In plane isotropic elasticity a strengthened form of the Ordered–Forces inequality is shown to imply that the restriction of the strain-energy function to the class of deformation gradients which share the same average of the principal stretches is bounded from below by the strain energy corresponding to the conformal deformations in this class. For boundary conditions of place, this property (together with a certain version of the Pressure–Compression inequality) is then used (i) to show that the plane radial conformal deformations are stable with respect to all radial variations of class C 1 and (ii) to obtain explicit lower bounds for the total energy associated with arbitrary plane radial deformations. For the same type of boundary conditions and together with a different version of the Pressure–Compression inequality, an analogous property in plane isotropic elasticity (established in [3] under the assumption that the material satisfies a strengthened form of the Baker–Ericksen inequality and according to which the restriction of the strain-energy function to the class of deformation gradients which share the same determinant is bounded from below by the strain energy corresponding to the conformal deformations in that class) is used (i) to show that the plane radial conformal deformations are stable with respect to all variations of class C 1 and (ii) to obtain explicit lower bounds for the total energy associated with any plane deformation.  相似文献   

13.
The purpose of this note is to examine distortion during pure pressure loading for anisotropic hyperelastic solids. We contrast the corresponding issues in compressible and incompressible hyperelasticity, and then use these results to examine nearly incompressible materials. An anisotropic compressible hyperelastic solid will generally exhibit both volume change and distortion under hydrostatic pressure loading. In contrast, an incompressible hyperelastic solid—both isotropic and anisotropic—exhibits no change to its current state of deformation as the hydrostatic pressure is varied. Nearly incompressible hyperelastic materials are compressible, but approach an incompressible response in an appropriate limit. We examine this limiting process in the context of transverse isotropy. The issue arises as to how to implement a nearly incompressible version of a given truly incompressible material model. Here we examine how certain implementations eliminate distortion under pure pressure loading and why alternative implementations do not eliminate the distortion.  相似文献   

14.
In the theory of nonlinear elasticity of rubber-like materials, if a homogeneous isotropic compressible material is described by a strain–energy function that is a homogeneous function of the principal stretches, then the equations of equilibrium for axisymmetric deformations reduce to a separable first-order ordinary differential equation. For a particular class of such strain–energy functions, this property is used to obtain a general parametric solution to the equilibrium equation for plane strain bending of cylindrical sectors. Specification of the arbitrary function that appears in such strain–energy functions yields some parametric solutions. In some cases, the parameter can be eliminated to yield closed-form solutions in implicit or explicit form. Other possible forms for the arbitrary constitutive function that are likely to yield such solutions are also indicated.  相似文献   

15.
Constitutive equations for the stress and couple stres on an incompressible, hemitropic, constrained Cosserat material are derived, and the theory is applied to study the problem of finite extension, torsion and expansion of a circular cylinder. As in the theory of isotropic simple elastic materials, it is found that the deformation is controllable by application of only a normal force and a tosional moment at the cylinder ends. It is shown that in general the well known universal relation between the torsional stiffness and the axial force for incompressible, isotropic simple materials in the limit as the twist goes to zero does not exist for incompressible, hemitropic Cosserat materials. However, for a special and unusual class of hemitropic materials, the same universal formula is found to hold for a certain reduced torsional stiffness. The main problem is solved completely for incompressible, hemitropic, linearly elastic, Cosserat materials; and certain additional special features of the Kelvin-Poynting type, which here appear to the first order in the amount of twist of the cylinder, are derived and discussed in relation to experimentally observed composite material behavior.  相似文献   

16.
In an earlier paper, the broadest classes of compressible isotropic strain energies that support irrotational universal deformations were identified and the problems of cylindrical and spherical inflation or compaction were solved in closed form for all of these strain energies. Similar closed form solutions of the problem of azimuthal shear are presented here.   相似文献   

17.
We formulate and study inflation, extension and twisting of prestressed cylindrical shells that are isotropic in the stress free configuration. We establish that if the prestresses vary only radially in the annular cylinder then a deformation field of the form , θ=Θ+ΩZ, z=λZ is possible in annular cylinders made of any incompressible material and find sufficient conditions for the deformation to be possible when made of compressible materials. When the material is capable of undergoing large elastic deformations and has a non-linear constitutive relation, for the cases studied here, there is up to 26 percent variation in the boundary loads required to engender a given boundary displacement between the prestressed and stress free annular cylinders. On the other hand, the difference in the realized deformation field is only marginal (less than 2 percent). These are unlike the case wherein the material obeys Hooke's law and undergoes small deformations. This study has some relevance to the deformation of blood vessels.  相似文献   

18.
All bodies are inhomogeneous at some scale but experience has shown that some of these bodies can be idealized as a homogeneous body. Here we examine which bodies can be idealized as a homogeneous body when they are subjected to a non-dissipative mechanical process. This is done by studying circumstances in which an inhomogeneous body admits pure stretch homogeneous deformations. Then, we devise experiments wherein these circumstances are prevented. If homogeneous deformation is observed in these devised experiments, the body could be modeled as a homogeneous body. We limit our analysis to a class of isotropic elastic bodies deforming from a stress free reference configuration whose Cauchy stress is explicitly related to left Cauchy–Green deformation tensor. It is further assumed that the constitutive relation is differentiable function of the position vector of material particles in the stress free reference configuration. Then, we find that a cuboid made of compressible and isotropic material could be modeled as a homogeneous body if it deforms homogeneously due to the application of the normal stresses on all of its six faces and the magnitude of the normal stresses on three orthogonal faces are different. A cuboid made of incompressible and isotropic material could be modeled as a homogeneous body, if it deforms homogeneously in two different biaxial experiments, such that the plane in which the forces are applied in the two biaxial experiments is mutually orthogonal.  相似文献   

19.
Conditions on the form of the strain energy function in order that homogeneous, compressible and isotropic hyperelastic materials may sustain controllable static, axisymmetric anti-plane shear, azimuthal shear, and helical shear deformations of a hollow, circular cylinder have been explored in several recent papers. Here we study conditions on the strain energy function for homogeneous and compressible, anisotropic hyperelastic materials necessary and sufficient to sustain controllable, axisymmetric helical shear deformations of the tube. Similar results for separate axisymmetric anti-plane shear deformations and rotational shear deformations are then obtained from the principal theorem for helical shear deformations. The three theorems are illustrated for general compressible transversely isotropic materials for which the isotropy axis coincides with the cylinder axis. Previously known necessary and sufficient conditions on the strain energy for compressible and isotropic hyperelastic materials in order that the three classes of axisymmetric shear deformations may be possible follow by specialization of the anisotropic case. It is shown that the required monotonicity condition for the isotropic case is much simpler and less restrictive. Restrictions necessary and sufficient for anti-plane and rotational shear deformations to be possible in compressible hyperelastic materials having a helical axis of transverse isotropy that winds at a constant angle around the tube axis are derived. Results for the previous case and for a circular axis of transverse isotropy are included as degenerate helices. All of the conditions derived here have essentially algebraic structure and are easy to apply. The general rules are applied in several examples for specific strain energy functions of compressible and homogeneous transversely isotropic materials having straight, circular, and helical axes of material symmetry.  相似文献   

20.
Hencky's elasticity model is an isotropic, finite hyperelastic equation obtained by simply replacing the Cauchy stress tensor and the infinitesimal strain tensor in the classical Hooke's law for isotropic infinitesimal elasticity with the Kirchhoff stress tensor and Hencky's logarithmic strain tensor. A study by Anand in 1979 and 1986 indicates that it is a realistic finite elasticity model that is in good accord with experimental data for a variety of engineering materials for moderate deformations. Most recently, by virtue of well-founded physical grounds and rigorous mathematical procedures it has been demonstrated by these authors that this model may be essential to achieving self-consistent Eulerian rate type theories of finite inelasticity, e.g., the J 2-flow theory for metal plasticity, etc. Its predictions have been studied for some typical deformation modes, including extension, simple shear and torsion, etc. Here we are concerned with finite bending of a rectangular block. We show that a closed-form solution may be obtained. We present explicit expressions for the bending angle and the bending moment in terms of the maximum or minimum circumferential stretch in a general case of compressible deformations for any assigned stretch normal to the bending plane. In particular, simplified results are derived for the plane strain case and for the case of incompressibility. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号